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Abstract—Teams of mobile cooperative robots are ideal candi-
dates for applications where the presence of humans is impossible
or should be avoided. Knowing the positions of the robots in
crucial in such scenarios. A possible solution is to derive relative
positions from local communication. In this work, we propose
an anchor-free online channel estimation method aimed at small
multi-robot teams. By combining both the Time-of-Flight (ToF)
and Received Signal Strength Indicator (RSSI) ranging, provided
by the nanoLoc devices, we perform an online estimation of the
indoor log-distance path loss model. This model will then be
used together with an Extended Kalman Filter to track distance
between every pair of units. The advantages compared to previous
work are: 1) we do not use any extra sensors, since all the data
is captured from the transceiver module; 2) we do not use any a
priori knowledge, the channel model is estimated online, without
the need of fixed anchor nodes; 3) we support the high dynamics
of RSSI with the improved accuracy of ToF.

I. Introduction

Mobile robotic units are ideal candidates for applications
such as transportation of large volumes, surveillance, search
and rescue, and cleaning [1], [2], [3]. They can either ensure
the safety of the people they replace, or perform tasks that
would be impossible for humans. Furthermore, using multiple
units cooperating as a team can maximise the utility of the
whole system, e.g., by increasing the effectiveness of surveil-
lance by performing cooperative sensing, improving the rate
of coverage in search and rescue, and by performing motion
coordination for the transport of large parts.

For such cooperation, one of the key factors is knowing
the positions of the robots. Occasional situations may allow
to build an infrastructure thus making absolute positions
available; however, building infrastructure is costly and it is
probably unavailable in emergency scenarios. GPS may be a
possible solution for outdoors; however, it may not be available
in locations such as in indoor spaces and street canyons. A
possible solution, which is considered in our work, is to derive
relative positions from local communication using algorithms
such as the MultiDimensional Scaling (MDS) [4], [5], which
minimises the dissimilarities of a connectivity matrix up to a
rigid formation. However, in order to implement such solution
the robots must first collect inter-robot distance information.
The problem of collecting such distance measurements is the
focus of this work.

In a common situation, every robot wants to communicate

with the other team members, therefore every robot transmits
messages regularly. Every such message can be received by
all robots in range, that in turn can extract Received Signal
Strength Indicator (RSSI) information from it. As it will be
explained further on, RSSI can be used to extract distance
information. Consequently, any messages exchanged between
the robots can potentially be used for inferring localisation.
In this work we use the nanotron’s nanoLoc kit [6], which
allows to perform Time-of-Flight (ToF) ranging, to provide a
ToF/RSSI hybrid ranging method aimed at small multi-robot
teams. For that purpose, we propose an anchor-free online
channel estimation method that uses the ToF and RSSI to
perform an estimation of the log-distance path loss model.
Using this model it is possible to dynamically improve the
accuracy of RSSI-based distance measurements. Then, we
present a distance tracker based on an Extended Kalman Filter
(EKF), providing both a distance estimate and the confidence
on that estimate. Finally, we present some experimental results
using real robots that confirm the superior accuracy of our
system with respect to a simple RSSI-based approach, while
keeping its reactivity. The advantages to previous work are:

• we do not use any extra sensors, since all the data is
captured from the transceiver module

• we do not use any a priori knowledge, the channel
model is estimated online

• there are no pre-installed anchor nodes

• we support the high dynamics of RSSI with the
improved accuracy of ToF

II. Related work

Localising nodes in a network of mobile robots is essen-
tial in order to put into practice a diversity of coordination
algorithms, such as team formation and path planning. For
example, in [7] the idea of using feedback laws to control
multiple robots together in a formation is explored. However,
in this work it was assumed that each robot had the ability
to measure the relative position with respect to its closest
neighbours. Also, in [8], the robots path is computed to ensure
that the network partition never occurs during the robots
motion, but the knowledge of global location (e.g. GPS) is
assumed available at each robot. The work in [9] explores
the sensor relocation in order to deal with sensor failure or
respond to new events. Methods of finding redundant sensors978-1-4799-2722-7/13/$31.00 c© 2013 IEEE



and moving sensors to specific areas are proposed, assuming
that sensors are placed into grids and global information is
shared to support relocation planning. These works essentially
consider that distances among robots are known, as opposed
to the situations we are aiming at.

Measuring distance between wireless nodes is a topic that
has been widely explored by many authors. Some focus on
time-based techniques, some focus on signal strength tech-
niques, and others on hybrid approaches.

The most common time based techniques rely on one-way
Time-of-Arrival (ToA) measurements [10], [11], [12], Time
Difference of Arrival (TDoA) [13], [14], [15], and Round-Trip
Time-of-Flight (RT ToF) measurements [16], [17]. However,
ToA and TDoA require global time synchronisation, since
the measurement is unilateral. On the other hand, RT ToF
eliminates the need for global clock synchronisation. For
simplicity, we will refer to the RT ToF, simply as ToF. In order
to do that, instead of measuring the time of one-way trip, it
measures the time that a message needs to go to the receiver
and return to the transmitter. Despite that, since some local
processing needs to be done on the receiver before sending
the reply, the processing time has to be very well known, thus
it is usually done in hardware. Adding to that, since the ranging
operation is between two units, it needs a long time to range
several units, thus it may not accommodate fast moving robots.
Angle of Arrival (AoA) based approaches that require antenna
arrays have also been proposed [18], [19].

The signal strength based techniques, as the name implies,
obtain range estimations from the strength of the received RF
signal [20]. In open space and without interference there is
a predictable relation between RSSI and distance, however, in
the presence of interference, reflection, and refraction, this rela-
tionship is no longer accurate. Despite that, most of the current
wireless transceivers possess the capability of measuring the
RSSI intrinsically. Therefore, if the application only requires a
coarse localisation, either for navigation or topology estimation
purposes, the RSSI can still be very useful. In order to obtain
ranging data from RSSI, some researchers use anchor-free RF-
only localisation methods without previous knowledge, such as
in [2], [21], where RSSI-based localisation is performed. In [2],
[21], the authors do not consider a propagation model and all
localisation is performed considering the “distance in the RSSI
space”, i.e., not an estimate of relative physical distance. Other
researchers rely on channel models to estimate real distance
based on RSSI, some using a priori channel measurements
[22], [23], and others performing online channel estimation,
either based on anchor nodes [24], [25] or based on external
sensors [23]. However, a priori data may be unavailable or
unreliable, i.e. either there is no previous knowledge or there
were severe changes to the environment; estimations based
on measurements between anchor nodes are not compatible
with unknown environments; and estimations performed with
external sensors require extra equipment.

As the work on [26] shows, hybrid techniques greatly im-
prove results, namely the authors simulated positioning using
combinations of ToA, TDoA, and RSSI, showing that RSSI has
limited usefulness where time-based techniques are available.
Despite that, ToF ranging requires a long time to range one
robot [27], and RSSI allows several receivers to “range” one
transmitter simultaneously, thus making RSSI appealing for
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Fig. 1. RF-based ranging: Dotted lines apply only when ToF data is available
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Fig. 2. Sliding window median filter (k = 5): The median filter (black) filters
out the outliers in the raw measurements (red)

applications with mobile robots where the dynamics of the
movements are not negligible. In this paper we explore using
the higher accuracy of ToF measurements to improve the
accuracy of a faster RSSI-based distance estimator by recurrent
online recalibration. In [28], a hybrid approach fusing RSSI
and round-trip time-of flight measurements is used. Unlike
the work in [28], which assumes the channel parameters
to be estimated in advance, our approach assumes no prior
knowledge and estimates the channel parameters in real time.

III. RF-based Ranging using ToF and RSSI

In this section, we describe our proposal to collect distance
information between cooperating robots using both ToF and
RSSI information. For that purpose, we propose to use three
distinct blocks (Fig. 1):

(1) A median sliding window to filter raw RSSI data
(2) A log-distance path loss model estimator
(3) An extended Kalman filter to estimate distance be-

tween robots

A. Filtering the RSSI readings

In indoors, the RSSI readings experience large fluctuations,
even when the robots are static, due to complex propagation
phenomena. For a group of mobile nodes, this instability
becomes even harder to handle. Therefore, in order to filter
those fluctuations, we use a sliding window median filter.
Whenever an RSSI reading is received, the measured value
goes through the filter that returns the median of the last k
measurements (Fig. 2). This may affect response time to true
variations on the RSSI of moving robots, therefore a small
value of k should be used.
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Fig. 3. Time-of-Flight ranging procedure: Node on the left requests a ranging
to node on the right.

B. Online Channel Estimation

1) Time-of-Flight Ranging: As shown before, one of the
methods that can be used for obtaining distances with RF
communications is ToF measurements. It works by measuring
the time a message needs to reach the destination and return.
The ranging is done in two phases (Fig. 3). The first phase
measures r1 = V × (t1 − t2)/2 and the second one measures
r2 = V × (t3 − t4)/2, where V is the propagation speed of the
RF signal. Finally, r2 is sent back and the values are averaged,

thus the whole ranging procedure returns d = (r1 + r2)/2. The
problem of using solely ToF ranging with mobile units is that it
is only possible to range one robot per ranging operation, thus
making this method less responsive to fast robot dynamics.
Moreover, each complete ranging, as measured by [27], takes
around 20ms. Consequently, in a five robot team, the time
required for one robot to range all the others is 80ms, and
the time needed for all robots is 400ms (plus overheads). In
spite of that, the ranging operation produces a physical distance
estimate that is accurate enough to be used for localisation.

2) Using RSSI as a distance measurement: RF power
decays as the electro-magnetic waves travel through air. By
measuring the RSSI of a message, and using a propagation
model, it is possible to infer the distance to the transmitter.
However, in order to be able to calculate the distance based
on RSSI, we need to know several parameters: transmission
power, antenna gains, frequency of the carrier, and medium
characteristics. In open space, the relationship between signal
strength and distance can be represented by the log-distance
path loss model. The model is given in Eq. (1), where ρd is the
RSSI value at distance d; ρ0 is the RSSI value at a reference
distance d0 (we consider d0 = 1), and includes the aggregated
effects of transmission power, antenna gains, and frequency
attenuation; and α ) is the path loss exponent that represents
the propagation medium properties.

ρd = ρ0 − 10α log

(
d

d0

)
⇔ d = d0 × 10(ρ0−ρd)/(10α) (1)

Note that unlike ToF, RSSI produces faster measurements
since several units can measure the signal strength of one unit
at the same time, i.e. if several units receive a message from
another one, all of them can obtain the RSSI value from that
message.

3) Using ToF and RSSI to estimate the propagation model:
We combine both the Time-of-Flight (ToF) and RSSI ranging,
provided by the nanoLoc devices [6], to perform an online
estimation of the log-distance path loss model. With this model
we are able to provide RSSI-based distance measurements
accurate enough for localisation, while simultaneously coping

with high movement dynamics. In order to use the propagation
model, we need to estimate some of the equation parameters,
namely the reference RSSI value (ρ0) at the respective refer-
ence distance (d0), and the path loss exponent (α). For that
purpose, we define a vector of predefined n equally spaced
log-distances (g1×n) and create the matrix A(n+1)×2 and vector
b(n+1)×1 (see Eq. (2)). The first n lines represent the previously
estimated model m̂t−1, and the (n + 1)th point represents the
new measurement. Then we minimise the square error Eq. (3)
to obtain the new channel model m̂t. This allows us to use a
fixed number of samples (n+ 1), and at the same time to fuse
the new knowledge into previous knowledge, with n defining
the weight of the new measurement.

At =



1 −10 log (g(1))
1 −10 log (g(2))
...

...

1 −10 log (g(n))

1 −10 log
(
dt

)



, bt =



ρ0,t−1 − 10αt−1log(g(1))
ρ0,t−1 − 10αt−1log(g(2))

...
ρ0,t−1 − 10αt−1log(g(n))

ρt



(2)

m̂t =

[
ρ̂0,t

α̂t

]
= (AT

t At)
−1AT

t bt (3)

C. Extended Kalman Filter for Range Tracking

In order to track the distance between robots, we imple-
mented an extended Kalman filter [29]. The state equation is
given in (4), where X is the state vector, d is the estimated
distance, and ḋ is the discrete-time approximation of the
derivative of distance. The prediction equation is Eq. (5), where
∆t is the time between consecutive state predictions and ω is
Gaussian noise. When we measure both ToF and RSSI, we use
measurement Eq. (6), and when we measure RSSI only we use
measurement Eq. (7). In these equations, ρ̄k is the measured
RSSI at time k, d̄k is the measured distance using ToF, ρ0 and
α are the propagation model parameters, biasd = is the bias
of the ToF measurements, ω(k) is the state noise, and ν(k) is
the measurement noise.

X =
[
d ḋ

]′
(4)

Xk =

[
1 ∆t
0 1

]
Xk−1 +

[
∆t2

2
0

0 ∆t

]
ω(k) (5)

[
d
ρ

]

k

=

[
dk − biasd

ρ0 − 10α log10(dk)

]
+ ν(k) (6)

[
ρ
]
k
=

[
ρ0 − 10α log10(dk)

]
+ ν(k) (7)

IV. Experimental Results

A. Setup

We programmed the nanoLoc devices with the software
developed for [27], which synchronises the communications
with an adaptive TDMA scheme. In our setup, we used three
such units with a communication period of 250ms (Fig. 4).
Consequently, in the absence of communication failures, each
node ranges one different node every 250ms, and receives one
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Fig. 4. Communication period as seen by node 2: Receives broadcast from
node 1, ranges node 1, receives broadcast from node 3, receives broadcast
from node 1, ranges node 3, receives broadcast from node 3, and repeats.

communication from each node between ranges. Those three
nodes were then placed on top of three robots [30] in an indoor
laboratory (approx. 20m×6m) , with a small (9.90m×5.75m)
soccer field. There, the robots are able to localise themselves
using an omnidirectional camera, which we consider as our
ground-truth distance.

We want to show that our system correctly adapts to a new
communication environment. For that purpose, we estimated
the communication channel parameters in a corridor, Eq.(8),
very different from the model estimated in the field for either
robot, Eq. (9). The bias of the ToF measurements biasd =

−0.3399 was experimentally determined using the data set
collected in the corridor. The state noise ω ∼ N(0, 100). The
covariance of the measurement was set according to whether
a TOF measurement is available or not. When the TOF was
available, the covariance was a 2-by-2 diagonal matrix with the
diagonal elements x11 = 0, 3646 and y22 = 19.6444, otherwise,
only y22 was considered.

[
ρ0

α

]
=

[
−37.6455

2.1849

]
(8)

[
ρ0

α

]

robot 1

=

[
−38.1485

1.6505

] [
ρ0

α

]

robot 3

=

[
−39.6955

1.1558

]
(9)

Robot 1 and Robot 3, were stopped in each side of the
mid-field and robot 2 was moved manually (remote control)
to preform the trajectory, see Fig. 5. We logged the data from
three experiments containing ground truth, ToF distances, and
RSSI measurements. Then, we post-processed them using five
different approaches:

1. Using the corridor model without ToF

2. Using the lab model without ToF

3. Using the online estimator whenever data is available

4. Using the online estimator every second

5. Using the online estimator every ten seconds

In the first approach we set both models to the parameters
corresponding to the corridor environment (Eq. (8)). In the
second approach, the models were set to the parameters corre-
sponding to the lab environment (Eq. (9)). Finally, in the last
three approaches, we aim to test the adaptability of the model
estimation algorithm to a different environment. Therefore, in
spite of the robots being located in the lab environment, the
initial channel parameter values were set in purpose to the
values in Eq. (8) corresponding to the corridor environment.

Note that the behaviour in all three experiments was
similar, favouring their confidence level. Therefore, only plots
from the first experiment are presented.
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Fig. 5. Soccer field where experiments were made: Robot 1 on the top mid-
field, Robot 3 on the bottom mid-field, Robot 2 moving along the magenta
trajectory

B. Results

We use an online channel model estimator to improve the
accuracy of RSSI-based distance measurements. However, in
order to estimate the true channel parameters, we would need
to take measurements at several distances. In our case, the
robots will only have access to a small observation window in
a certain time frame ∆t. Therefore, the estimated channel will
not be the true channel, but rather a local approximation about
a given distance. Despite that, if we can obtain parameters that
approach the true channel locally, then we can estimate correct
distances from the RSSI measurements. In order to prove the
capabilities of our channel estimation algorithm to adapt to
the time-varying channel conditions. we have plotted in Fig. 6
the 15-sample average of 10(ρ0−median rssi)/(10α) − dground truth.
This data represents the error imposed by the communication
channel model on the accuracy of RSSI-based distance mea-
surements. When the corridor model is used (blue line with no
markers), the distance is always underestimated, i.e. is biased,
and since this bias will vary with the environment it cannot
be filtered Consequently if we change the environment, the
wrong model will degrade our estimate. When the lab model
is used (grey ’o’), the results are substantially improved, the
estimation bias tends to oscillate around the zero error instead
of being negative. The third and fourth approaches (black ’+’,
and magenta ’X’ respectively) produce a result very similar
to the lab model, which implies that the model is locally
correct. The fifth approach (red ’.’) initially is very similar to
the corridor model. This was expected, since it only estimates
the model every ten seconds. Despite that, in the end it behaves
very similarly to the lab model, which means that it converged
to a locally correct model.

The effect of these different approaches on the estimated
distance can be seen in Table I that summarises the results
of the three experiments. Figures 7, and 8 present the distri-
bution of the errors on experiment 1 using the five different
approaches. As expected from the previous results, when the
robots are using the corridor model, the Kalman filter produces
an error with a large bias. Moreover, when we compare our
online estimator with the lab model, we can still improve on
those results. That can be justified by the usage of the highly
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Fig. 6. Error imposed by the communication channel model on the

accuracy of RSSI-based distance measurements (10(ρ0−median rssi)/(10α) −

dground truth):(top) Robot 1; (bottom) Robot 3

accurate ToF ranging on the data fusion. Finally, by comparing
the three approaches of the online estimation, we can see that
by increasing the number of ToF ranges we can improve the
results of the estimation. This was expected because of the high
accuracy of ToF when compared with RSSI ranging. However,
we also show that if the medium is constant enough that allows
for a small number of channel estimates, we can still have a
good accuracy with RSSI only. Consequently, depending on
the conditions the robots are expected to operate in, we can
trade-off accuracy for bandwidth. If we have a high number
of ToF rangings, we have more accuracy, if we have less ToF
rangings we have less accuracy. Note that each ranging uses
20ms, in which the robots cannot communicate.

V. Conclusion and future work

In this work, we have successfully combined the ToF
and RSSI ranging to perform an online estimation of the
indoor log-distance path loss model, which together with
an EKF was used to track distance between three robots.
Results show that by using our online estimator, we can
approach the performance of a pre-calibrated channel model,
with the advantage of supporting dynamic changes on the
communication environment. Moreover, we show that it is
possible to dramatically reduce the number of ToF ranges,
with negligible accuracy loss. This reduction is only possible
if the communication channel is stable for large periods of
time, however, it translates in bandwidth gain. Some issues
still remain open, specifically, the optimization of the time
interval between ranges.
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TABLE I. Error of the estimate from all three experiments

Appr. 1 Appr. 2 Appr. 3 Appr. 4 Appr. 5

Exp 1
mean -0.7195 0.1331 0.0529 0.1866 0.0185

std 0.8515 1.1399 0.9171 0.9988 1.3478

Exp 2
mean -0.8199 0.1033 0.0457 0.1024 0.0431

std 0.7640 0.9319 0.8025 0.8613 0.9024

Exp 3
mean -0.8086 0.0778 0.0394 0.1417 0.0452

std 0.6918 0.8676 0.8075 0.8637 0.8233

(a) Robot 1

Appr. 1 Appr. 2 Appr. 3 Appr. 4 Appr. 5

Exp 1
mean -1.1927 0.4849 -0.1341 -0.3496 -0.5593

std 1.0129 2.3984 1.4321 1.4109 1.1715

Exp 2
mean -1.2319 0.3017 -0.1866 -0.3893 -0.5199

std 0.9976 2.7022 1.3593 1.9220 1.2927

Exp 3
mean -1.2279 0.1954 0.0151 -0.1349 -0.6710

std 0.9923 2.3229 1.9418 1.8334 1.3242

(b) Robot 3
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