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Abstract—Coverage path planning is the operation of finding
a path that covers all the points of a specific area. Thanks to
the recent advances of hardware technology, Unmanned Aerial
Vehicles (UAVs) are starting to be used for photogrammetric
sensing of large areas in several application domains, such
as agriculture, rescuing, and surveillance. However, mostof
the research focused on finding the optimal path taking only
geometrical constraints into account, without considering the
peculiar features of the robot, like available energy, weight,
maximum speed, sensor resolution, etc. This paper proposesan
energy-aware path planning algorithm that minimizes energy
consumption while satisfying a set of other requirements, such
as coverage and resolution. The algorithm is based on an energy
model derived from real measurements. Finally, the proposed
approach is validated through a set of experiments.

I. I NTRODUCTION

Unmanned Aerial Vehicles (UAVs) are being used in many
application domains for surveying and inspecting large areas
to identify specific features of interests that otherwise should
be detected at higher costs and times. For instance, UAVs are
used in agriculture for detecting the state vegetation and plan
for a timely intervention, [1], [2], [3], for surveying wooded
area for fire prevention [4], inspecting industrial plants [5],
and in several other situations, such as handling disastersand
rescuing people in difficult to reach environments.

All these applications require the survey of a given area
using specific sensors that are mission dependent. Example of
sensors are video cameras, multispectral/thermal/3D cameras,
temperature/humidity/pressure/ sensors, proximity sensors, and
so on. UAVs can be divided in two main categories: fixed-wing
and multi-rotors. Fixed-wing UAVs have the main advantages
that can cover large distances and carry higher payloads, but
cannot focus on a scene for long time. For this type of task,
multirotor UAVs are more appropriate, since can be used as
mobile cameras pointing desired details; however, they have
the inconvenience of a lower battery duration and a lower
payload.

For the particular problem of image reconstruction of
geographical zones, a lot of research has been done for finding
the optimal path that achieves a complete coverage of the area
of interest. This problem, is known as coverage path planning
(CPP). Most of the work on CPP, however, has taken only
geometrical constraints into account without consideringthe
peculiar features of the UAV, (e.g., the available energy, the
weight, the maximum speed) and other mission requirements,
(e.g., the spacial resolution of the acquired images). This
paper proposes an energy-aware path planning algorithm that
minimizes energy consumption while satisfying a set of other
requirements, such as coverage and resolution. The algorithm
is based on an energy model derived from real measurements.

Finally, the proposed approach is validated through a set of
experiments.

Contributions . This papers has two main contributions.
First, an energy model is derived from real measurements
to find the power consumption as a function of the UAV
dynamic in different operating conditions. Second an energy-
aware algorithm is presented for finding the path that reduces
energy consumption while satisfying coverage and resolution
requirements.

Paper organization. The rest of the paper is organized
as follows. Section II presents the related work. Section III
introduces system model and the relation among the states
variables. Section IV describes how to find the speed that
minimizes the energy of a given path. Section V presents the
path planning algorithm. Section VI reports a set of experi-
mental results carried out to validate the proposed approach.
Section VII states our conclusions and future work.

II. RELATED WORK

The problem of coverage path planning has been exten-
sively studied by several authors. Among them, Galceran and
Carreras investigated in detail the Coverage Path Planning
(CPP) [6] showing pros and cons of several methods like
cellular, grid-based, graph based, neural-network with online
or off-line computation and for known or unknown areas.
Maza et al. [7] proposed an algorithm to divide the whole
area taking into account UAVs relative capabilities and initial
locations. In particular, they used the maximum range of
the UAV as a measure of their capabilities. After the area
decomposition each UAV has to compute the sweep direction
which minimizes the number of turns needed along a back-
and-forth pattern.Öst in his thesis [8] provided an analysis
of two different types of search methods (back-and forth and
spiral) for convex-concave areas. He stated pros and cons of
the two search methods combined with some area decompo-
sition algorithms. Barrientos et al. [9] proposed a one-phase
automatic task partitioning manager for team of UAVs based
on negotiation among the vehicles, considering their stateand
capabilities. Santamaria et al. [10] proposed a path planning
algorithm for multiple heterogeneous UAVs that also consider
different sensors footprints. Bast and Hert [11] investigated the
problem of partitioning an arbitrary polygon into a minimum
number of convex pieces taking into account that the resulting
subspaces need to be reasonable for robotic applications. They
showed that partitioning an area with minimal cut length is
NP-hard and proposed a polynomial algorithm that produces a
non-optimal but reasonable partitioning. Huang [12] proposed
an optimal line-sweep-based decomposition algorithm that
minimizes the amount of time needed to cover an area with
obstacles. He uses dynamic programming to find an optimal



area decomposition by assuming to know the area boundaries
and obstacles inside.

A different approach has been taken by Lawrance and
Sukkarieh [13], who formulated the atmospheric energy gain
produced by the wind as a path planning problem and pre-
sented an algorithm capable of generating energy-gain trajec-
tories using both static and dynamic soaring. Al-Sabban et al.
[14] exploited wind energy to extend the flight duration of an
UAV during the route from a starting point to another. Roberts
et al. [15] estimated an energy model of a hover-capable flying
robot and proposed an algorithm that mitigates the energy
consumption in an indoor aerial exploration by using ceiling
attachment as a means for preserving energy while maintaining
the camera contact with the target.

Mei et al. [16] investigated the problem of the deployment
of mobile wheel robots with energy and timing constraints.
They proposed a speed-management method for optimizing the
robot speeds and used energy constraints and area constraints,
such as obstacles, to find the optimal number of robots
to deploy. They also constrained the maximum amount of
time available for performing the task. However, their only
considered the energy consumption on a constant speed and
did not investigate the energy consumption due to accelerations
in general trajectories.

III. SYSTEM MODEL

This paper considers a quad rotor equipped with a video
camera mounted on a stabilizer, which compensates for small
rotation displacements that may be experienced by the UAV
during navigation. The objective of the mission is to recon-
struct the image of a given area with a spatial resolutionR no
lower thanRd, expressed in pixels/cm.

We assume that images are taken by a video camera having
the following parameters:

• Angle of view (AOV), α (expressed in radians), that
is, the angular extent of a given scene that is imaged
by the camera;

• Image Resolution(Ix, Iy), expressed in pixels for both
image sides;

• Aspect ratioρ, that is, the ratio between the image
width and image height (ρ = Ix/Iy);

• Minimum sampling periodTmin
s , that is, the minimum

interval between two consecutive shots.

An UAV flying at a given heighth from the ground acquires
an image corresponding to a specific portion of the area, called
projected area. The size of the projected area depends on the
height h and the angle of view (AOV)α, as illustrated in
Figure 1. If the camera is exactly parallel to the ground (this
assumption can be done considering the camera stabilizer),the
size (Lx, Ly) of the projected area can be computed as

{

Lx = 2h · tan
(

α
2

)

Ly = Lx/ρ
(1)

Hence, the spacial resolutionR obtained by taking a picture

x
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y

Fig. 1. Projected area of a camera with AOVα placed at heighth.
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Fig. 2. Projected areas overlapped both on the horizontal and vertical side.
The center of the rectangles are the waypoints computed during a back-and-
forth pattern.

at heighth is

R =
Ix
Lx

=
Ix

2h · tan
(

α
2

) . (2)

By substituting equation (2) in the inequality imposed by
the mission requirement (R ≥ Rd) we have that

h ≤
Ix

2Rd · tan
(

α
2

) . (3)

Hence, the mission requirement imposes a constraint on the
maximum height the UAV can fly, which is

hmax =
Ix

2Rd · tan
(

α
2

) . (4)

To perform image reconstruction by photogrammetry, the
area of interests has to be decomposed into rectangles of size
(Lx, Ly) and the UAV has to be programmed on a trajectory
that passes through their centers. The entire path is storedas a
list of coordinates, called waypoints, and the UAV moves from
a waypoint to the next until the end of the list. The complete
path includes other parameters, as the coordinates in GPS, the
height, the delays between waypoints, the speed, etc.

It is important to observe that, to correctly merge the
acquired images, each projected area has to be overlapped as
shown in Figure 2. The amount of overlap can be chosen by
the user and can be different on each side. The horizontal and
vertical overlaps are denoted asovx andovy , respectively, and
are expressed as a number in [0,1], where 0 means no overlap,
and 1 full overlap. The distance between the centers of two
adjacent areas becomesdx = Lx(1 − ovx) in the horizontal
direction, and asdy = Ly(1− ovx).



Note that the sampling periodTs of the camera (i.e.
the interval between two consecutive shots) imposes another
constraint on the maximum speed of the UAV. In particular,
the space covered by the UAV between two consecutive image
acquisitions must satisfy the minimum specified overlap, that
is v · Ts ≤ Ly(1− ovy). Therefore,

vmax =
Ly(1− ovy)

Ts
. (5)

For the sake of clarity, Table I summarizes the main
parameters used in this section.

Variable Name
α angle of view (rad)
f focal length (mm)
Ix image width (pixels)
Iy image height (pixels)
ρ aspect ratio
Ts camera sampling period
R spacial resolution (pixels/cm)
ovh horizontal overlap (pixels)
ovv vertical overlap (pixels)
h height (m)

TABLE I. L IST OF THE MAIN SYSTEM PARAMETERS.

A. Energy model

Given the large variety of drones, each with specific
physical characteristics, like weight, type of power supply,
propellers, etc., deriving a general parametric energy model
that can be used to predict the energy consumption in different
operating conditions is a hard task. In this work, we propose
a method that can be used to model and analyze the energy
consumption of a specific drone as a function of its speed and
operating conditions.

To derive an energy model suited for the analysis, we
performed a set of experiments aimed at understanding how
the energy consumption is affected by the different operating
conditions, such as speed, horizontal and vertical accelerations.
The drone used for the experiment is an IRIS quadrotor with
a GoPro camera mounted on a Gimbal stabilizer, controlled
by a PX4 autopilot board. The Iris weighs about 1.3 Kg, and
is equipped with four 850 Kv motors and powered with a 3S
lipo battery 11.1 V 5.5 Ah. The stabilizer uses two brushless
motors to ensure that the camera always points with high
precision to the specified direction. The GoPro camera can
be used at three different resolutions (5-7-12 Megapixel) and
two different AOV (94, 4-122.6 deg). The PX4 board runs the
open-source APM ardupilot.

In a first experiment, we programmed the drone to run
at the maximum acceleration and deceleration, monitoring the
speed from the onboard GPS and the absorbed current from
the control board. The consumed power was then derived by
multiplying the absorbed current by the supply voltage, for
each speed. Figure 3 shows the speed and the power acquired
under maximum acceleration, along with the corresponding
fitted curves. Similarly, Figure 4 shows the same quantities
acquired under maximum deceleration.

Thus, the energy consumed to vary the speed fromv1 to
v2 with a given accelerationa can be computed as

Ea =

∫ t2:v=v2

t1:v=v1

Pa(t) dt. (6)
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Fig. 3. Speed and power consumption acquired during maximumacceleration.
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Fig. 4. Speed and power consumption acquired during maximumdecelera-
tion.

In a second experiment we derived the power consumption
as a function of the speed in different flight conditions, such
as horizontal flight, climbing, descending, and hovering. The
results of this experiment are reported in Figure 5, which
also shows the fitted curve. Note that, since the climbing and
descending operation is always performed at a constant speed,
the corresponding power consumption is plotted as a single
point in the graph corresponding to that speed. Also note that
the power consumed during hovering corresponds to the the
point in the graph forv = 0. The energy consumed in a
straight flight to cover a distanced at a constant speedv can
be computed as

Ev =

∫ d/v

0

P (v) dt = P (v)
d

v
. (7)

The energy consumed during climbing and descending to cover
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Fig. 5. The fitted curve of the power consumption as a functionof the speed
during a straight flight. The figure also shows the measured power while the
UAV climbs, descends, and hovers. These values are plotted as single points
since the speed during these operation is constant

a height displacement∆h can be computed as

Eclimb =

∫ h2/v̂climb

h1/v̂climb

Pclimb dt = Pclimb
∆h

vclimb
(8)

Edesc =

∫ h1/v̂desc

h2/v̂desc

Pdesc dt = Pdesc
∆h

vdesc
(9)

(10)

Finally, the energy consumed during hovering in an interval
[t1, t2] can be computed as

Ehover =

∫ t2

t1

Phover dt = Phover(t2 − t1). (11)

A third experiment was carried out to measure the time
and the power needed during rotations. Since both the angular
rotation speedωturn(2.1rad/s) and the powerPturn(225W/s)
consumed during rotations can be considered constant, the
energy required to cover an angle∆θ can be computed as

Eturn = Pturn
∆θ

ωturn
. (12)

IV. F INDING THE OPTIMAL SPEED

The curve reported in Figure 5 shows the power consump-
tion as a function of the linear speed of the UAV. The objective
of this section is to compute the speed value that minimizes
the energy required to cover a given straight path of lengthd.
The solution to this problem is first shown in a simple case
of constant speed, and then extended to the more general case
of variable speed, taking into account the acceleration profile
recorded during the experiments.

A. Constant speed

The energy consumed by the UAV during a straight flight at
constant speedv to cover a distanced is expressed by Equation
(7). Figure 6 shows how this energy changes with the speed.

As evident from Figure 6 the curve has a minimum for a
speedv∗ ≃ 12 m/s, which can be computed as

v∗ = min
v

P (v)
d

v
. (13)
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Fig. 6. Energy consumed by the UAV flying straight at constantspeedv for
a distanced.

B. Variable speed

To solve the energy minimization problem in the presence
of accelerations, we consider trajectories consisting of three
phases: an acceleration phase, an intermediate phase in which
the UAV has a constant speed, and a final deceleration phase.
The total space covered after these three phases is must be
equal to a give distanced. Hence, the optimal speedv∗ can
be found by minimizing the following function:

E(d) =

∫ t1

0

Pacc(t) dt+

∫ t2

t1

P (v) dt+

∫ t3

t2

Pdec(t) dt (14)

wherePacc, P (v) andPdec are the functions derived from the
experiments reported in Section III-A by interpolating data
with fifth order polynomials, and

t1 : vacc(t1) = v (15)

t2 =
d− dacc − ddec

v
=

d−
∫

vacc(t1) dt−
∫

vdec(t1) dt

v
(16)

t3 : vdec(t3) = 0 (17)

Figure 7 shows the energy consumed as a function of
the maximum speed for different given distancesd whereas
Figure 8 reports the optimal speed as a function of the covered
distanced. Note that for long distances (d > 1 Km) v∗ tends
to the optimal value computed assuming constant speed. This
result allows us, to compute the optimal speed that minimizes
the energy consumption for each straight line of lengthd
during the path.

V. PATH PLANNING

The search area considered in this work is defined by
an ordered set ofv vertices. Each vertexvi has coordinates
vi = (vx, vy). The corresponding inner angle on each vertex
is calledγi and the bounding lines between each vertex have
length li,j = ||vi − vj ||, as illustrated in Figure 9. The
area can be either convex or concave. An area is convex if
∀i, γi < π, concave otherwise. In this work no complex shapes
are considered, that is, the bounding lines do not intersecteach
others.
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A. Optimized Back-and-forth Algorithm for convex and con-
cave areas

The back-and-forth algorithm creates a set of waypoints
that scan the entire area back and forth along one direction.
The number of turns during the survey impacts the time
needed to accomplish the entire path since the robot needs
to decelerate, turn and accelerate. In the literature, a lotof
work has been done to find the optimal scan direction that
minimizes the number of turns [6], [12]. Figure 10 shows
an example that highlights that changing the scan direction
produces a reduction in the number of turns.

If the area has a high number of concavities, finding the
optimal direction can be difficult. However, in UAV applica-
tions the shape of the area is not a real concern because of
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γ1 γ2

γ3

γ4
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l4,5
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Fig. 9. An example of survey area considered in this paper.

A B

Fig. 10. The number of turns in path A is higher than in path B.

two reasons: a) the survey area is often a quadrilater and even
if the area is convex or concave the number of vertex is low,
and b) we can assume that there are no obstacles on the sky
(after a certain height). For this reason we propose a simple
but effective algorithm that optimizes the path by reducingthe
number of turns by setting the scan direction parallel to the
longest bounding line. Is not proved that this choice will lead
to the minimum number of turns, but in practice it will be close
to it. Another improvement can be done if we consider that
normally the final and the starting points can be far from each
others and the distance to come back is wasted. To address this
issue, the proposed algorithm exploits the return trajectory as
a final part of the planned path.

The proposed path planning algorithm decomposes the
entire path into three main parts:

1) A list of waypoints that starting from the first vertex
go to the longest bounding line through the borders.

2) A list of waypoints that cover the area with the back-
and-forth pattern along a scan direction parallel to the
longest bounding line.

3) A list of waypoints that go from the final point to
the starting point through the borders, if they are not
coincident.

Note that, in order to minimize the total energy consump-
tion, for every straight distance the speed is set at the optimal
value.

Algorithm Part 1: Given an areaA = {v1, . . . , vp} and
a starting point coincident with one of its vertices, e.g.
start vertex index= 1,

1) Find the longest bounding linelmax = lk,k+1 being
k, k+1 the indexes of the vertices determininglmax;

2) set the scan direction to be parallel tolmax by finding
the slope of the longest line;

3) seti =start vertex index;
4) while (i 6= k)

a) compute the distanced = ||vi − vi+1|| from
the current vertex to the next vertex plus
an additional distance to cover the piece
of region created if theγi+1 > π/2. In
this case the distance is computed asd =
||vi − vi+1|| + cot(π − γi+1) · Lx as shown
in Figure 11;

b) place the first waypoint at a distance
(Ly/2, Lx/2) from the border and them−1
waypoints at a distance∆y = dy from each
other, along the current scanning direction;

c) incrementi.

The number of waypoints is computed asm = ⌈d/∆y⌉ but
sincem is rounded up to the next nearest integer, the projected
area of themth waypoint will also include an area that is out
of interest (Figure 11) and will produce an additional path to
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Fig. 11. If the inner angleγi+1 > pi/2 the distanced also includes an
additional part. The number of waypoints can be then computed as m =
⌈d/∆y⌉. However, the projected area created by the last waypoints also covers
an area out of interest.

d− Ly

d
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Fig. 12. The first waypoint is placed at a distance(Ly/2, Lx/2). The other
waypoints are equally distant each other to perfectly fitd.

reach that waypoint. To overcome this problem, in Part 1.4b is
possible to compute∆y = (d−Ly)/(m− 1). This will avoid
the need to go any further to cover a region out of interest
(Figure 12) and at the same time it will lead to an increase of
the overlap.

Algorithm Part 2: In this phase, the back-and-forth pattern
takes into account that the area will be reduced by the portion
scanned in Part 1 and considers an area for the returning path
that will be computed in Part 3.

1) To compute the number of stripesns, we need to
calculate the maximum distancedmax between the
longest sidelk,k+1 and the farthest vertex of the area.
Then, the number of stripes is computed asns =
⌈dmax/dx⌉;

2) if (ns mod 2 6= 0), ns is incremented by one to
make the value even. Note that incrementing the
number of stripes by one does not increase the total
distance, because otherwise there would be a useless
path from the final point to the starting point (Fig-
ure 13). Another benefit is that the horizontal overlap
also slightly increased sincens is incremented;

3) the distance between two stripes∆x needs to be
computed taking into account that the first and the
last strip do not need an overlap on the border, thus
∆x = (dmax−Lx)(ns−1) as showed in Figure 13.B.

4) for each strip compute the lengthd of the strip, and
createm waypoints as in Part 1 of the algorithm.

Algorithm Part 3: At the end of phase 2 the last waypoint
created will be close to the farthest vertex used to compute
dmax. If this vertex is not coincident with the starting point
we need to come back to the starting point along the borders:

dmax

A B

∆x
Lx

2 Lx

2

dmax−Lx

ns−1

Fig. 13. The number of stripes is computed asns = ⌈dmax/dx⌉. Figure A
shows that, whenns is odd, the final strip may be to the opposite direction
with respect to the starting point. Figure B shows that ifns is incremented
to an even number the final strip direction will point at the starting point.

ns = 9
ns = 10

l3,4

l4,5
l5,6

l6,7Sub− area

Fig. 14. During the back-and-forth scanning, if it is present a concave sub-
area, the algorithm, before continuing the scan, runs recursively the whole
procedure on the sub-area.

1) Seti = farthest vertex index ;
2) while (i 6=start vertex index)

a) place the first waypoint at a distance
(Ly/2, Lx/2) from the border and them−1
waypoints at distance∆y from each other
computed as in part 1, along the current
scanning direction;

b) incrementi.

Handling concavities: In order to take into account all the
concavities, the algorithm, during Part 2, checks the sides
involved during the current scan. If the next strip will involve
a side that is not contiguous, it performs the scan but before
going to the next strip it recursively runs the whole algorithm
on the region just created. Figure 14 clarifies the procedureby
an example: when the next strip isns = 9, the involved side
will be l6,7 that is not contiguous tol3,4. The algorithm will
scan stripns = 9 but before going to the next strip it will run
the algorithm to the sub-area just created.

VI. ENERGY-AWARE COVERAGE PATH PLANNING

Given a desired spacial resolutionRd, the maximum
altitude hmax is computed by Equation 4. Then, with the
algorithm described in Section V, we can compute the way-
points of a specific area. A feasibility test can be used to
check whether the computed path is suitable for a UAV with
specific characteristics and energy. In fact, the total energy
consumption of the entire path can be computed as follows:

Etot=Eclimb(0, hmax) + Edesc(hmax, 0) + ntEturn (18)

+
∑

i

(Eacc(0, v
∗

i ) + Ev(di, v
∗

i ) + Edec(di, v
∗

i ))
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Fig. 15. Coverage path planning computed with the algorithm

wheredi is the distance between two waypoints that compose
a straight line denoted with the indexi, v∗i is the optimal speed
to travel di, andnt is the total number of turns in the path.
Given the amount of available energyEa, the feasibility test
can simply be done by checking ifEtot < Ea. If the feasibility
test is passed, the remaining energy (Ea−Etot) can be used to
increase the spatial resolution of the acquired images. This can
be done by iteratively reducing the flight altitude, recomputing
the path, and re-running the feasibility test, until an altitudeh
is found such thatEtot = Ea−ǫ, whereǫ is a given tolerance.
If the feasibility test is not passed, the path has to be redesigned
considering multiple flights or multiple UAVs. Note that energy
can be traded with the spatial resolution, and the same iterative
procedure can be applied to reduce the total required energyby
increasing the altitude. However, finding the optimal altitude
that minimizesEtot is highly complex due to the non linearity
of the problem: increasing/decreasing the height will change
the energy consumption not monotonically.

A. Experimental Validation

To validate the energy model, we created a set of waypoints
over a random area at a height ofh = 20 (Figure 15). By
actually flying the area with the IRIS quadcopter, the flight
time to cover the area wast ≃ 200 s and the measured energy
was Etot = 4.53 · 104 J. The estimated energy, computed
according to our energy model waŝEtot = 4.62 · 104 J, and
the estimated flight time waŝt = 210.09 s. These results show
that the estimated values were close to the actual values, with a
relative error on the flight time estimateet = (t̂− t)/t = 0.05
and on the total energyeE = (Êtot − Etot)/Etot = 0.02.

VII. C ONCLUSIONS

This paper presented an energy-aware path planning al-
gorithm that computes a path for achieving the full coverage
of a given survey area, taking into account other constraints,
namely the available energy, the minimum spacial resolution
for the pictures, and the maximum camera sampling period.
The paper described a method for deriving an energy model
of a specific UAV starting from real measurements. Using
such a model, the proposed algorithm computes the speed that
minimizes energy consumption along a given distance. Once
the full path is generated, it is possible to derive the speed
that minimizes the energy consumption for each segment in

the path. Then, a feasibility test is performed to verify whether
the energy available on the UAV is sufficient to scan the entire
area.

Note that, since energy is minimized along individually
path segments, the resulting solution is suboptimal. However,
the proposed approach has the advantage of combing together
different mission constraints, such as area coverage, energy
consumption, and image resolution.
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[8] G. Öst, “Search path generation with uav applications using approx-
imate convex decomposition,” Master’s thesis, Linköpings universitet,
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