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Abstract—Coverage path planning is the operation of finding  Finally, the proposed approach is validated through a set of
a path that covers all the points of a specific area. Thanks to experiments.
the recent advances of hardware technology, Unmanned Aelia
Vehicles (UAVs) are starting to be used for photogrammetric Contributions. This papers has two main contributions.
sensing of large areas in several application domains, such First, an energy model is derived from real measurements
as agriculture, rescuing, and surveillance. However, mostof to find the power consumption as a function of the UAV
the research focused on finding the optimal path taking only  dynamic in different operating conditions. Second an eyerg
geometrical constraints into account, without considerig the aware algorithm is presented for finding the path that resluce

peculiar features of the robot, like available energy, weibt,  anergy consumption while satisfying coverage and resmiuti
maximum speed, sensor resolution, etc. This paper proposes requirements

energy-aware path planning algorithm that minimizes enery
consumption while satisfying a set of other requirements, uch Paper organization The rest of the paper is organized
as coverage and resolution. The algorithm is based on an ey 45 fo|lows. Section Il presents the related work. Sectidn I
g‘poggggﬂg’?’inggtn; drfﬁrlo%iazugi?“gptes);p';'r?g%téhe Propos® jnioduces system model and the relation among the states
' variables. Section IV describes how to find the speed that
minimizes the energy of a given path. Section V presents the
. INTRODUCTION path planning algorithm. Section VI reports a set of experi-
mental results carried out to validate the proposed approac

Unmanned Aerial Vehicles (UAVs) are being used in manySection VIl states our conclusions and future work.
application domains for surveying and inspecting largeasire

to identify specific features of interests that otherwiseusth

be detected at higher costs and times. For instance, UAVs are Il. RELATED WORK

used in agriculture for detecting the state vegetation dad p The problem of coverage path planning has been exten-
for a timely intervention, [1], [2], [3], for surveying woedl  gjyely studied by several authors. Among them, Galceran and
area for fire prevention [4], inspecting industrial plantd, [ carreras investigated in detail the Coverage Path Planning
and in several other situations, such as.handlmg disaatets (CPP) [6] showing pros and cons of several methods like
rescuing people in difficult to reach environments. cellular, grid-based, graph based, neural-network witfinen

All these applications require the survey of a given arer ©ff-line computation and for known or unknown areas.
using specific sensors that are mission dependent. Exarfiple @22 et al. [7] proposed an algorithm to divide the whole
sensors are video cameras, multispectral/thermal/3D e@ne aréa taking into account UAVs relative capabilities andiani
temperature/humidity/pressure/ sensors, proximity@epand  ocations. In particular, they used the maximum range of
s0 on. UAVs can be divided in two main categories: fixed-wingtN€ UAV as a measure of their capabilities. After the area
and multi-rotors. Fixed-wing UAVs have the main advantagesdeqompqs.'t'qn each UAV has to compute the sweep direction
that can cover large distances and carry higher payloads, bt¥hich minimizes the number of turns needed along a back-
cannot focus on a scene for long time. For this type of taskand-forth patternOst in his thesis [8] provided an analysis
multirotor UAVs are more appropriate, since can be used a8f two different types of search methods (back-and forth and

mobile cameras pointing desired details: however, the;ehavSpiral) for convex-concave areas. He.stated pros and cons of
the inconvenience of a lower battery duration and a lowefh® two search methods combined with some area decompo-

payload. sition algorithms. Barrientos et al. [9] proposed a onesgha
automatic task partitioning manager for team of UAVs based
For the particular problem of image reconstruction ofon negotiation among the vehicles, considering their siate
geographical zones, a lot of research has been done fordindircapabilities. Santamaria et al. [10] proposed a path pranni
the optimal path that achieves a complete coverage of ttee aralgorithm for multiple heterogeneous UAVs that also coesid
of interest. This problem, is known as coverage path plapnindifferent sensors footprints. Bast and Hert [11] investdahe
(CPP). Most of the work on CPP, however, has taken onlyproblem of partitioning an arbitrary polygon into a minimum
geometrical constraints into account without considetimg number of convex pieces taking into account that the rewsylti
peculiar features of the UAV, (e.g., the available enerbg, t subspaces need to be reasonable for robotic applicatitiey. T
weight, the maximum speed) and other mission requirementshowed that partitioning an area with minimal cut length is
(e.g., the spacial resolution of the acquired images). Thi&NP-hard and proposed a polynomial algorithm that produces a
paper proposes an energy-aware path planning algorithim thaon-optimal but reasonable partitioning. Huang [12] pisgxb
minimizes energy consumption while satisfying a set of nthean optimal line-sweep-based decomposition algorithm that
requirements, such as coverage and resolution. The dgorit minimizes the amount of time needed to cover an area with
is based on an energy model derived from real measurementsbstacles. He uses dynamic programming to find an optimal



area decomposition by assuming to know the area boundaries
and obstacles inside.

A different approach has been taken by Lawrance and
Sukkarieh [13], who formulated the atmospheric energy gain
produced by the wind as a path planning problem and pre- y
sented an algorithm capable of generating energy-gaiectraj
tories using both static and dynamic soaring. Al-Sabban.et a
[14] exploited wind energy to extend the flight duration of anFig. 1. Projected area of a camera with A@Vplaced at height.
UAV during the route from a starting point to another. Robert d

X

et al. [15] estimated an energy model of a hover-capableglyin —

robot and proposed an algorithm that mitigates the energy — La

consumption in an indoor aerial exploration by using cgiin T [ [T 71
attachment as a means for preserving energy while maintaini L, ° 0

the camera contact with the target. dy J

Mei et al. [16] investigated the problem of the deployment

of mobile wheel robots with energy and timing constraints. ov, - L. T
They proposed a speed-management method for optimizing the

robot speeds and used energy constraints and area cotsstrain | | | &
such as obstacles, to find the optimal number of robots : — AR
to deploy. They also constrained the maximum amount of
time available for performing the task. However, their only
considered the energy consumption on a constant speed and

did not investigate the energy consumption due to accédaat Fig. 2. Projected areas overlapped both on the horizontlvartical side.
in general trajectories. The center of the rectangles are the waypoints computeaglariback-and-
forth pattern.

IIl. SYSTEM MODEL

, i ) ) . at heighth is
This paper considers a quad rotor equipped with a video
camera mounted on a stabilizer, which compensates for small R— Iy I @)
rotation displacements that may be experienced by the UAV " L, 2h-tan (%)

during navigation. The objective of the mission is to recon-
struct the image of a given area with a spatial resoluftono

lower thanR,, expressed in pixels/cm. By substituting equation (2) in the inequality imposed by

the mission requiremenf{> R;) we have that
We assume that images are taken by a video camera having I,
the following parameters: h< ———.
2R4 - tan (5)

®3)

* Angle of view (AOV), a (expressed in radiar}s)., that Hence, the mission requirement imposes a constraint on the
is, the angular extent of a given scene that is imageq,avimum height the UAV can fly, which is
by the camera; '
1y

2R, - tan (%) ’ “)

¢ Image Resolutiol,, I,), expressed in pixels for both hmaz =
image sides;

e Aspect ratiop, that is, the ratio between the image  To perform image reconstruction by photogrammetry, the
width and image heighto(= 1./1,); area of interests has to be decomposed into rectangleseof siz
(Lz, Ly,) and the UAV has to be programmed on a trajectory
that passes through their centers. The entire path is stwred
list of coordinates, called waypoints, and the UAV movesrfro
An UAV flying at a given height. from the ground acquires & waypoint to the next until the end of the I|s_t. The .complete
an image corresponding to a specific portion of the areaeaall Path includes other parameters, as the coordinates in GeS, t
projected area. The size of the projected area depends on th&'€ight, the delays between waypoints, the speed, etc.
height » and the angle of view (AOV)y, as illustrated in It is important to observe that, to correctly merge the

Figure 1: If the camera is exa_ctly_ parallel to the grou_nds(thi acquired images, each projected area has to be overlapped as
assumption can be done considering the camera stabiliaer), shown in Figure 2. The amount of overlap can be chosen by

e  Minimum sampling period™", that is, the minimum
interval between two consecutive shots.

size (L., Ly) of the projected area can be computed as the user and can be different on each side. The horizontal and
o vertical overlaps are denoted @s, andov,, respectively, and
{ Le =2h - tan (5) (1) are expressed as a number in [0,1], where 0 means no overlap,
Ly=La/p and 1 full overlap. The distance between the centers of two

adjacent areas becomés = L.(1 — ov,) in the horizontal
Hence, the spacial resolutidghobtained by taking a picture direction, and asl, = L,(1 — ov,).



Note that the sampling period’; of the camera (i.e.
the interval between two consecutive shots) imposes anoth:
constraint on the maximum speed of the UAV. In particular,
the space covered by the UAV between two consecutive imag
acquisitions must satisfy the minimum specified overlapf th
isv-Ts < Ly,(1— ovy,). Therefore,
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Measured speed at max acceleration
Interpolated curve

Speeed (m/s)
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For the sake of clarity, Table | summarizes the main
parameters used in this section.

T T T T
Measured power during the accelration
Interpolated curve

g 300 N
Variable | Name g
« angle of view (rad) £ 250t 1
f focal length (mm)
I, image width (pixels) ‘ ‘ ‘ ‘ ‘ ‘ ‘
1y image height (pixels) 20, 5 10 15 20 25 30 35 40
P aspect ratio Time (s)
Ts camera sampling period
R spacial resolution (pixels/cm
ovy, horizontal overlap (pixels) Fig. 3. Speed and power consumption acquired during maxiangeleration.
0V, vertical overlap (pixels)
h height (m)
TABLE I. L IST OF THE MAIN SYSTEM PARAMETERS

T T T T
Measured speed during deceleration
Interpolated curve

A. Energy model

Given the large variety of drones, each with specific
physical characteristics, like weight, type of power syppl
propellers, etc., deriving a general parametric energy ehod o ‘ ‘ ‘ ‘ ‘ ‘ s
that can be used to predict the energy consumption in differe 0 2 4 ¢ © I
operating conditions is a hard task. In this work, we propose
a method that can be used to model and analyze the ener
consumption of a specific drone as a function of its speed an 3001\
operating conditions.

Speed (m/s)
=
o

350

T
Measured power during deceleration
Interpolated curve B

sl TN

Power (W)

To derive an energy model suited for the analysis, we
performed a set of experiments aimed at understanding ho
the energy consumption is affected by the different opegati 150, : I m
conditions, such as speed, horizontal and vertical act&es. Time (s)

The drone used for the experiment is an IRIS quadrotor with

a GoPro Camer_a mounted on a_Glmt,)al stabilizer, COntrOIIe(rj—lig. 4. Speed and power consumption acquired during maximecelera-
by a PX4 autopilot board. The Iris weighs about 1.3 Kg, andion.
is equipped with four 850 Kv motors and powered with a 3S
lipo battery 11.1 V 5.5 Ah. The stabilizer uses two brushless
motors to ensure that the camera always points with high . . .
precision to the specified direction. The GoPro camera can Ina se(_:ond experiment we d_erlved th_e power consumption
be used at three different resolutions (5-7-12 Megapixed) a as a function of the speed in different flight conditions,tsuc

two different AOV 04, 4-122.6 deg). The PX4 board runs the as horizontal_ flight, c!imbing, descending’. and_ hoveringeT
open-source APM araupilot results of this experiment are reported in Figure 5, which

also shows the fitted curve. Note that, since the climbing and

In a first experiment, we programmed the drone to rundescending operation is always performed at a constantspee
at the maximum acceleration and deceleration, monitotieg t the corresponding power consumption is plotted as a single
speed from the onboard GPS and the absorbed current fropwint in the graph corresponding to that speed. Also note tha
the control board. The consumed power was then derived byhe power consumed during hovering corresponds to the the
multiplying the absorbed current by the supply voltage, forpoint in the graph forv = 0. The energy consumed in a
each speed. Figure 3 shows the speed and the power acquirgiaight flight to cover a distanagat a constant speed can
under maximum acceleration, along with the correspondinge computed as

fitted curves. Similarly, Figure 4 shows the same quantities
acquired under maximum deceleration.

200

d/v
Thus, the energy consumed to vary the speed freno E, = / P(v)dt = p(v)ﬂl_ 7)
vy With a given acceleration can be computed as 0 v
to:v=v2
Ea = /tlm_v1 Pa(t) dt. 6) The energy consumed during climbing and descending to cover



O  Measured power at different constant speed
Interpolated curve

+  Measured power while climbing
Measured power while descending

300 *

Power (W)

16

Speed (m/s)
Fig. 5. The fitted curve of the power consumption as a funatibthe speed
during a straight flight. The figure also shows the measureeepavhile the

UAV climbs, descends, and hovers. These values are plostesingle points
since the speed during these operation is constant

a height displacemenkh can be computed as

rha /Detimb Ah
Eclimb = / Pclimb dt = Pclimb (8)
hi/Pctimb Uclimb
hl/"}desc Ah
Edesc = / Pdesc dt = Pdesc— (9)
h2/?dese desc
(10)

Finally, the energy consumed during hovering in an interval E(d) =

[t1,t2] can be computed as

"ty
Ehover = / Phover dt = Phover (t2 - tl)- (11)

t1
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Fig. 6. Energy consumed by the UAV flying straight at constpeedv for
a distanced.

B. Variable speed

To solve the energy minimization problem in the presence
of accelerations, we consider trajectories consistinghoée
phases: an acceleration phase, an intermediate phasedh whi
the UAV has a constant speed, and a final deceleration phase.
The total space covered after these three phases is must be
equal to a give distancé. Hence, the optimal speed can
be found by minimizing the following function:

t1 t2 t3
Pueo(t) dt + P(v)dt+
0 t1 ta

Pdec(ﬁ) dt (14)

whereP,.., P(v) and P, are the functions derived from the
experiments reported in Section IlI-A by interpolating alat
with fifth order polynomials, and

A third experiment was carried out to measure the time

and the power needed during rotations. Since both the angula ?1 : Vace(t1) = v

rotation speedy;,,,(2.1rad/s) and the power,,.,,(225W/ s)

consumed during rotations can be considered constant, thel2 = =

energy required to cover an angle can be computed as
Ab

Eturn = Pturn .
Wturn

(12)

IV. FINDING THE OPTIMAL SPEED

(15)
d— dacc - ddec d— fvacc(tl) dt — f Udec(tl) dt
v v
(16)
ﬁ3 : Udec(ﬁg) =0 (17)

Figure 7 shows the energy consumed as a function of
the maximum speed for different given distancésvhereas

The curve reported in Figure 5 shows the power consumpFigure 8 reports the optimal speed as a function of the covere
tion as a function of the linear speed of the UAV. The objextiv distanced. Note that for long distancesl (- 1 Km) v* tends
of this section is to compute the speed value that minimizeo the optimal value computed assuming constant speed. This
the energy required to cover a given straight path of leagth result allows us, to compute the optimal speed that minisize
The solution to this problem is first shown in a simple casethe energy consumption for each straight line of lendth
of constant speed, and then extended to the more general cahgring the path.

of variable speed, taking into account the acceleratioffilpro

recorded during the experiments.

A. Constant speed

V. PATH PLANNING

The search area considered in this work is defined by

The energy consumed by the UAV during a straight flight atan ordered set of vertices. Each vertex; has coordinates
constant speedto coveradl_stancéls expressed t_>y Equation v; = (v,,v,). The corresponding inner angle on each vertex
(7). Figure 6 shows how this energy changes with the speedis calledy; and the bounding lines between each vertex have

As evident from Figure 6 the curve has a minimum for a

speedv* ~ 12 m/s, which can be computed as

v* = min P(v)—.
v v

(13)

length I; ; = |lv; — v;||, as illustrated in Figure 9. The
area can be either convex or concave. An area is convex if
Vi,v; < m, concave otherwise. In this work no complex shapes
are considered, that is, the bounding lines do not inte st
others.



Minimization function at given covered distances
Minimum of the function
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Fig. 10. The number of turns in path A is higher than in path B.
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two reasons: a) the survey area is often a quadrilater and eve
if the area is convex or concave the number of vertex is low,
and b) we can assume that there are no obstacles on the sky
(after a certain height). For this reason we propose a simple
: i i \ \ \ but effective algorithm that optimizes the path by redudimg

0 2 4 6 8 10 12 . . .

Speed (mis) number of turns by setting the scan direction parallel to the

longest bounding line. Is not proved that this choice wilde

Fig. 7. Energy consumed as a function of the maximum speedifferent ~ to the minimum number of turns, but in practice it will be aos
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T

o
o
T

given distancesl. to it. Another improvement can be done if we consider that
normally the final and the starting points can be far from each
14 others and the distance to come back is wasted. To addrsss thi

issue, the proposed algorithm exploits the return trajgcas
a final part of the planned path.

[
N
T

[
o
T

The proposed path planning algorithm decomposes the
entire path into three main parts:

1) A list of waypoints that starting from the first vertex
go to the longest bounding line through the borders.
2)  Alist of waypoints that cover the area with the back-

Optimal speed (m/s)
(=) [o}

Optimal speed as a function of the distance | | and-forth pattern along a scan direction parallel to the
2 s s longest bounding line.
0 00 e - 1000 1500 3) A list of waypoints that go from the final point to
the starting point through the borders, if they are not
Fig. 8. Optimal speed as a function of the covered distahce coincident.

Note that, in order to minimize the total energy consump-

A. Optimized Back-and-forth Algorithm for convex and con-  tion, for every straight distance the speed is set at thevapti
cave areas value.

The back-and-forth algorithm creates a set of waypointdlgorithm Part 1: Given an aread = {vi,...,v,} and
that scan the entire area back and forth along one directio® Sstarting point coincident with one of its vertices, e.g.
The number of turns during the survey impacts the timestartvertexindex=1,
needed to accomplish the entire path since the robot needs
to decelerate, turn and accelerate. In the literature, aflot
work has been done to find the optimal scan direction that
minimizes the number of turns [6], [12]. Figure 10 shows
an example that highlights that changing the scan direction
produces a reduction in the number of turns.

1) Find the longest bounding ling,,, = lx x+1 being
k, k+1 the indexes of the vertices determinihg,..;

2) setthe scan direction to be paralleltq,.. by finding
the slope of the longest line;

3) seti =start vertex index;

4)  while (¢ # k)

If the area has a high number of concavities, finding the a) compute the distance= ||v; — v;11|| from
tions the shape of the area is not a real concern because of an additional distance to cover the piece

of region created if they,;; > #/2. In
this case the distance is computed c&as=
[lvi — vig1]] + cot(m — vi41) - L, @s shown
in Figure 11;

b) place the first waypoint at a distance
(Ly/2, Ly/2) from the border and the: — 1
waypoints at a distanca, = d, from each
other, along the current scanning direction;

c) increment.

V4

lus

The number of waypoints is computedias= [d/A,] but

119 U2 sincem is rounded up to the next nearest integer, the projected
’ area of them! waypoint will also include an area that is out

Fig. 9. An example of survey area considered in this paper. of interest (Figure 11) and will produce an additional path t

U1



‘ |[vi — via]| cot(m — vit1) - Ls
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Fig. 11. If the inner angley; 11 > pi/2 the distanced also includes an drm L, Jd : e ‘
additional part. The number of waypoints can be then conthaterm = z 2 e Ly
[d/Ay]. However, the projected area created by the last waypdstiscavers ) 2
an area out of interest. Fig. 13. The number of stripes is computedras= [dinqz /dz:]. Figure A
d shows that, whem is odd, the final strip may be to the opposite direction
with respect to the starting point. Figure B shows that if is incremented
‘ d— L ! to an even number the final strip direction will point at tharshg point.
— L, |

—t—
L,/2 A,
Fig. 14. During the back-and-forth scanning, if it is preasarconcave sub-

Fig. 12. The first waypoint is placed at a distarids, /2, Lz /2). The other  area, the algorithm, before continuing the scan, runs saaly the whole
waypoints are equally distant each other to perfectlylfit procedure on the sub-area.

reach that waypoint. To overcome this problem, in Part 1s4bi 1) Seti = farthestvertex index ;

possible to computé,, = (d — L,)/(m — 1). This will avoid 2) while (i #start vertex index)

the need to go any further to cover a region out of interest a) place the first waypoint at a distance
(Figure 12) and at the same time it will lead to an increase of (L,/2, L,/2) from the border and the: — 1
the overlap. waypoints at distance\, from each other

computed as in part 1, along the current
scanning direction;
b) increment.

Algorithm Part 2: In this phase, the back-and-forth pattern
takes into account that the area will be reduced by the portio
scanned in Part 1 and considers an area for the returning path

that will be computed in Part 3. Handling concavities: In order to take into account all the

concavities, the algorithm, during Part 2, checks the sides
involved during the current scan. If the next strip will ifve

longest sidéy, ;.1 and the farthest vertex of the area. & s_ide that is not co.nti.guous, i_t performs the scan but b_efore
Then, the number of stripes is computed/as=  90ing to the next strip it recursively runs the whole aldunit
[dymas/ds; on the region just created. Figure 14 clarifies _the procet_iylre

2) if(ns mod 2 # 0), n, is incremented by one to @n example: when the next stripiig = 9, the involved side
make the value even. Note that incrementing thewill be le,7 that is not contiguous td; 4. The algqnt_hm_wnl
number of stripes by one does not increase the totafcan stripns = 9 but before going to the next strip it will run
distance, because otherwise there would be a usele$d€ algorithm to the sub-area just created.
path from the final point to the starting point (Fig-
ure 13). Another benefit is that the horizontal overlap VI. ENERGY-AWARE COVERAGE PATH PLANNING
also slightly increased since; is incremented,; ) ) ) ) )

3) the distance between two stripes, needs to be ‘Given a desired spacial resolutioRg, the maximum
computed taking into account that the first and thealtitude %4, is computed by Equation 4. Then, with the
last strip do not need an overlap on the border, thuglgorithm described in Section V, we can compute the way-
Ay = (dmae—Ls)(ns—1) as showed in Figure 13.B. Ppoints of a specific area. A feasibility test can be used to

4) for each strip compute the lengthof the strip, and ~ check whether the computed path is suitable for a UAV with
createm waypoints as in Part 1 of the algorithm. ~ specific characteristics and energy. In fact, the total gner

consumption of the entire path can be computed as follows:
Algorithm Part 3: At the end of phase 2 the last waypoint
created will be close to the farthest vertex used to compute Etot = Eciimb (0, hmaz) + Edesc(hmaz; 0) + neEyurn (18)
dmaz- If this vertex is not coincide_nt With the starting point +Z(Eacc(0,vf) + Ey(di, v}) + Eaee(di, v)))
we need to come back to the starting point along the borders: Z

1) To compute the number of stripes, we need to
calculate the maximum distaneg,., between the
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the path. Then, a feasibility test is performed to verify tites
the energy available on the UAV is sufficient to scan the entir
area.

Note that, since energy is minimized along individually
path segments, the resulting solution is suboptimal. Hewev
the proposed approach has the advantage of combing together
different mission constraints, such as area coverageggner
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Fig. 15. Coverage path planning computed with the algorithm

[2]

whered; is the distance between two waypoints that composel3]
a straight line denoted with the indéxv; is the optimal speed
to travel d;, and n; is the total number of turns in the path.
Given the amount of available enerdy,, the feasibility test

can simply be done by checking#f;,; < E,. If the feasibility el
test is passed, the remaining ener@y, ¢ E;,;) can be used to
increase the spatial resolution of the acquired images ddm

be done by iteratively reducing the flight altitude, recorimuy [5]

the path, and re-running the feasibility test, until antadte »
is found such that;,,, = E, —e¢, wheree is a given tolerance.
If the feasibility test is not passed, the path has to be igded (6l
considering multiple flights or multiple UAVs. Note that ege
can be traded with the spatial resolution, and the sameiitera 7,
procedure can be applied to reduce the total required etgrgy
increasing the altitude. However, finding the optimal atte
that minimizesE,,; is highly complex due to the non linearity
of the problem: increasing/decreasing the height will gean
the energy consumption not monotonically.
9

A. Experimental Validation el

To validate the energy model, we created a set of waypoints
over a random area at a height bf= 20 (Figure 15). By [1q
actually flying the area with the IRIS quadcopter, the flight
time to cover the area was~ 200 s and the measured energy
was F;,; = 4.53 - 10* J. The estimated energy, computed
according to our energy model wds,; = 4.62 - 10* J, and
the estimated flight time was= 210.09 s. These results show
that the estimated values were close to the actual valudsawi
relative error on the flight time estimate = (¢ —t)/t = 0.05
and on the total energyr = (Fiot — Eiot)/Fror = 0.02.

(11]

(12]

(13]

VII.

This paper presented an energy-aware path planning al4]
gorithm that computes a path for achieving the full coverage
of a given survey area, taking into account other conssaint
namely the available energy, the minimum spacial resaiutio ;-
for the pictures, and the maximum camera sampling period.
The paper described a method for deriving an energy model
of a specific UAV starting from real measurements. Using[16]
such a model, the proposed algorithm computes the speed that
minimizes energy consumption along a given distance. Once
the full path is generated, it is possible to derive the speed
that minimizes the energy consumption for each segment in

CONCLUSIONS

consumption, and image resolution.
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