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Abstract—Monitoring teams of mobile nodes is becoming distance from the packet source. Therefore, any exchanged

crucial in a growing number of activities. When it is not possble  packet can be used to determine the relative distance of each
to use fix references or external measurements, a practicabl nqe. However, RSSI information is affected by multi-path
solut_lon is to derive relative positions from IO(_:aI communcation. fading phenomenons and quantization noise that can cause
In this work, we propose an anchor-free Received Signal Stregth . - ) .
Indicator (RSSI) method aimed at small multi-robot teams. large errors on distance estimation. Besides RSSI methods,
Information from Inertial Measurement Unit (IMU) mounted  the distance between wireless nodes can be computed by
on the nodes and processed with a Kalman Filter are used ysing techniques based on signal propagation delays. Sbme o
to estimate the robot dynamics, thus increasing the qualityof ey require global time synchronization, as Time of Afriva

RSSI measurements. A Multidimensional Scaling algorithm $ . . .
then used to compute the network topology from improved RssI (T0A) [2] [3] and Time Difference of Arrival (TDoA) [4] [5]

data provided by all nodes. A set of experiments performed on Measurements. Others, like Round-Trip Time-of-Flight{[d]
data acquired from a real scenario show the improvements ove now on Time of Flight (ToF) for brevity, do not need global
RSSl-only localization methods. With respect to previous wrk  time synchronization, since based on unilateral measursme
only an extra IMU is required, and no constraints are imposed Alternative approaches exploit Angle of Arrival (AoA) tech

on its placement, like with camera-based approaches. Moreer, . that d ant t K 181 19
no a-priori knowledge of the environment is required and no Midues that need antenna arrays to work [8] [9].

fixed anchor nodes are needed. In addition to radio signals, the position of a mobile unit
can be estimated by IMU sensors. An IMU is a device usually
. INTRODUCTION composed by accelerometers, gyroscopes and, sometimes, a

Teams of mobile nodes are effective solutions for a bromdagnetometer. By an IMU it is possible to measure velocity,
range of applications. For instance, a team of robotic nodesentation, and gravitational forces on a body. Hence, a
can be used to accomplish several tasks, such as cleaningnobile robot equipped with an IMU can derive its speed
hazardous area, surveillance, monitoring, exploratieaych and position integrating the acceleration with respecirte
and rescue, and transportation. In one hand, a robotic temfortunately, the acceleration values provided by an IMU
can avoid the human presence in risky situations, in therottsuffer a small bias that, together with the integration pes¢
hand it can represent the most convenient solution in tefmsaauses drift errors to the position measures.
performance, costs, and efficiency. Another example regard To increase the accuracy of the measured distances, an
localization systems used to track and support human werkeffective solution is to combine different sources of data.
operating in dangerous areas [1]. o

The coordination of a set of mobile nodes requires - Contributions and summary
solve different problems, such as nodes localization, dataThis work proposes a localization method that combines
communication, and tasks allocation. This paper is focased inertial data provided by IMU sensors, ToF, and RSSI infor-
the localization problem, which is of paramount importate mation obtained from radio communications, to derive inter
guarantee the cooperation among the team members. In sorode distances. These distances are stored by each node in
situations, it might be possible to exploit an infrastruetthat a distance matrix used to compute the relative coordinates
makes feasible to derive the absolute positions. An exampleevery team member through a weighted Multidimensional
of such as an infrastructure is the Global Positioning SgsteScaling (wMDS) algorithm [10].

(GPS) which is a very common solution; nevertheless, it is The major advantage of the proposed solution is that the
not a feasible solution in indoor environments or in paticu precision of distance measurements is improved by comipinin
places where the signal is not available. An alternativetemt  IMU and ToF with RSSI information, maintaining the fast

is to build a dedicated infrastructure,which is often goathd dynamics of RSSI readings. Moreover the proposed system
not feasible in emergency situations. does not use expensive hardware, since IMU sensors and radio

In common situations, nodes frequently transmit messageansceivers that provide RSSI information are widely uesedl
to collaborate. Thus, inter-nodes distances can be mehsumet expensive. Moreover, nowadays there are manufacturers
from radio signals exploiting different techniques. Intpar that provide low cost devices for ToF measurements [11].
ular, a node can extract Received Signal Strength IndicatofThe rest of the paper is organized as follows. Section I
(RSSI) information from any received packet to derive thanalyzes the related work, Section Il describes the Inaali



tion system in detail, Section IV shows the simulation andith respect to the RSSI and IMU data fusion approach. The
the experimental results and, finally, Section VI states oatithors concluded that the improvements obtained by fusing
conclusions and future work. IMU and RSSI information reduces the positioning error to a
certain amount, but the resulting accuracy is not signiflgan
improved. However, they also concluded that the achievable
A lot of research has been carried out on the problelncalization accuracies suffices for the person localirasice-
of indoor localization. Several solutions are based on timearios considered in the experiments. Woodman and Harle [22
based techniques, RSSI techniques, and some others expleficribed a tracking system for pedestrian localizatigidi&
IMU sensors. More recent works proposed hybrid methodsildings. The proposed system uses a model of the building,
that combine different types of data, e.g RSSI and IM@d foot mounted IMU and a particle filter to deal with the
data, to improve the accuracy of position measures. The méapical drift problems of inertial sensors. The initial ftam
techniques used for data fusion are based on Kalman [18],the tracked person is obtained by exploiting RSSI data
Bayesian and Particle [13] filtering. obtained from a set of WiFi access points. The system is able
Oliveira et al. [14] proposed an anchor-free localizatioto track the position of a person in buildings with multiple
algorithm intended for small multi-robot teams. By comhmi floors and stairs. The experimental results showed that, by
both the ToF and RSSI ranging, the algorithm performs arsing an ultrasonic localization system as ground truth, th
online estimation of the indoor log-distance path loss rhodeesulting position accuracy &5 meters for75% of the time,
of the radio channel. This model is then used, together wiimd0.73 meters for95% of the time. Fink et al. [1] presented
an Extended Kalman Filter (EKF) [12], to track the distanca localization system based on sensor fusion of RSSI data and
between every pair of units. In [15], the authors proposgmbsitioning data obtained by an Inertial Navigation System
another approach to fuse RSSI and ToF information th&iNS) composed by two accelerometers and one gyroscopic
differently from [14], assumes the channel parameters to bensor. The precision of distance measures obtained by RSSI
estimated in advance. data was increased by adopting a diversity scheme based on
Some other research works base their localization systeargenna and frequency diversity and a KF to estimate and
on both IMU devices and Ultra-WideBand (UWB) radio posieorrect the drift errors of the INS. The proposed system has
tioning technology, which is mainly based on TDoA and AoAeen evaluated in a testbed composed by eight anchor nodes,
techniques. Corrales et al. [16] proposed a hybrid trackimglled reference nodes, evenly distributed in an overgtoun
system for the localization of a person in a workplace. THengwall mining. The node to be tracked is carried by a
system is composed by an inertial motion capture systeperson that moves linearly among the reference nodes. The
used to track the movements of the person’s limbs, and byperiments highlighted that the localization system show
an UWB localization system. The positions measured lan average estimation error @f68 metres. Li et al. [23]
both systems are combined through a Kalman Filter (Kipresented a method to track mobile nodes that fuses WiFi
to improve the measurements accuracy. Benini et al. [IRSSI data and inertial data from a smartphone. The proposed
presented an indoor localization system for mobile agerdgslution is composed by a Sequential Monte Carlo Kalman
combining data provided by a commercial UWB localizatioFilter (SMC-KF), which elaborates the navigation data aogni
system and a low-cost IMU by means of an EKF. In [18] thfom the smartphone IMU, and a Steepest Descent Random
same authors extended their method by adding position d&8tart (SDRS) algorithm that elaborates the RSSI data. The
coming from a visual odometry system based on markers. Tperformance of the proposed approach has been assessed by
proposed solution is utilized to track the position of a dmalsimulation experiments an compared with solutions based on
Unmanned Air Vehicle (UAV). Savioli et al. [19] proposed anMU data elaborated by an EKF, and solutions based on UWB
indoor localization system that combines position dataingm radio-location devices.
from an UWB localization system and inertial sensors. The In the solutions reported above, RSSI and UWB positioning
data fusion is obtained by a fixed-gain steady KF that lowegiaita are gathered exploiting a set of wireless nodes used as
the computational complexity of the algorithm, allowing it reference anchors. The work proposed in this paper does not
implementation on resource limited devices, typicallydide rely on fixed anchors, but the RSSI data are gathered from the
wireless sensors network applications. local communication among the robotic team members. Note
Some other works proposed methods to combine RSSI ahdt, the main advantage of an anchor-free approach is that
IMU data. Malyavej et al. [20] considered the localizationt does not require a fixed infrastructure, making the system
problem of indoor mobile robots. They proposed a localirati more flexible and cheaper.
method based on the fusion of RSSI data, coming from WiFi

II. RELATED WORK

access points, and data coming from onboard IMU sensors. 1. SYSTEM DESCRIPTION
The sensor data fusion is obtained by an EKF. Schmid et
al. [21] presented an experimental study on the pedeswian | The system is composed by mobile nodes{n,...,n,}

calization problem, which analyzes the improvements that cthat communicate through a radio channel forming a fully
be obtained by fusing inertial data and RSSI data. This wodonnected network. Each node is equipped with an IMU and
compared the accuracy of a RSSI-only localization approaalradio system that provides both RSSI and ToF information.



The localization is performed by two sub-systems. A firgtontrol the median sliding window filter as described in deta
one, called Distance Measurement Sub-system (DMS), whiichSection IlI-B. The sub-systet®? M S; produces two outputs:
estimates the inter-nodes distance every time a packetars estimation of the distance;{) betweern; andn; and its
received, and a second sub-system, which use these irder-neovariancer;;. The approach shown in Figure 1 not only gives
distances to compute the relative positions of all nodes. better estimation of distances, but also provides infoionat

Each nodep; implements the DMS, which estimates theegarding the quality of each distance depending on theabctu
inter-node distances from RSSI, ToF, and IMU data collectemise level and node mobility.
by the node. Each node estimates its speed using data atquiréAll these data are collected and integrated in the second sub
from the onboard IMU. system to compute the map with all the nodes relative loca-

When a new ToF information is available it is possibléions. A technique widely used to perform the estimatiomés t
to estimate the channel model. We use the RSSI value Nltidimensional Scaling (MDS) [24], which is a method that
estimate the distance every time a packet is received. I$ds arepresents measurements of similarity (or dissimilaatyjong
important to note that each node sends its estimated speeils of objects as distances between points in a N-dimeakio
inside the packet: when a node receives a packet it can gpace. Applications of the MDS algorithm include scientific
the information regarding the transmitter speed and its owisualization and data mining in several fields [24], inéhgl
estimated speed to estimate their relative speed and impritvalso can be used to find a relative map between nodes [25].

the accuracy of the estimated distance with the RSSI. The algorithm takes as input data pairwise (dis)similesiti
In particular, each DMSis composed by four main blocks, (e.g., distances) and returns a set of coordinates as aeelat
as shown in Figure 1: map. Givenn nodes in two dimensions and the estimated

« Afilter that mitigates the noise and the quantization erropgirwise distances;;, MDS recovers the nodes coordinaigs
present in the RSSI data implemented as a median slidifeg all nodes minimizing the mismatch between the estimated
window; distancesd;; and the distances;;(%;,%;) corresponding to

« An on-line channel estimator based on ToF informatiothe unknown coordinateg;. The mismatch is calle®tress
used to characterize the relation between the nodes digaction If a reliability information is associated with the

tance and the RSSI; measured distance, it is possible to use wMDS [10]. In wMDS,
« A KF that estimates the nodes movements from IMithe Stress functiorns defined as:
data;
o An EKF that integrates the output of the other blocks n n -
and provides a better estimation of the distance between S(Z1, ..., Zn) = Z Z wyj[dij — dij (Ti, T5)]*+
nodes. i=1 j#i,j=1 1)
777777777777777777777777777777777777777777777777777777777777777777 - =2
KF where w;; is the weight associated with the corresponding
| distance. In our system it is possible to define the weight as
¥ 3 a function of the covariance information from the output of
U di oo 3 the EKF of the first sub-system. As shown in Figure 2, each
ij5 05 ! . . .
! ! noden, estimates all the distancés; and the covariance;;
Py Window EKF | for the nodes); with DM S;. This information is aggregated
‘ 3 Filter Bij 3 inside the blockCollector which produces the distance matrix
d ool | @ ‘ D and the weight matrid¥’. D is an x n matrix where
! ‘ each itemi, j corresponds to the estimated distane (on
! e Channel | the diagonald;; = 0). Since wMDS requires a symmetric
TOF”> Estimator matrix, each itemD,; of the matrix is calculated as the mean
! betweend;; andd;;. W is an x n matrix where each item

R ! is obtained as a function of the covariancgg, as better
Fig. 1. Overview of the inter-robot Distance Measuremerii-System (DMS) descnbe_d in Section II-D. WM,DS also recglves as mpUt,a set
on noder;. of coordinates used as a starting point. Using set of estithat

coordinates computed in the previous iteration as an inut f

Figure 1 shows the block diagram that illustrates the wholke next wMDS estimation, it is possible to reduce the emor i
sub-system. Each packed received from negeprovides the map topology of the nodes, as will be showed in detail in
information regarding the node speé&gd and p;; that is the Section V. The wMDS algorithm can be distributed on each
RSSI of the packet. The TgFvalue provided by the ToF node, or executed on one of them, or on a central station. The
technigue is used to estimate the channel modglis the estimated distances by the nodes are exchanged as part of the
acceleration vector from the node’s IMU. The EKF estimatasireless communication, to aggregate the matrices andigxec
the relative speed betweep and n; used to dynamically the wMDS algorithm in one of the tree ways mentioned above.



DMS, dij.o1; This allows to run the MLE algorithm using a fixed number
! of samplesi:+ 1), and to fuse the new knowledge into previ-
ous one, wheren defines the weight of the new measurement.

D,W
DMSs |da;, 09 Collector wMDS | X B. Using inertial measurement to improve RSSI readings
The velocity of a noden; can be used to improve the
windowed RSSI filter previously described by re-sizing the
length of the window accordingly to the velocity, which is
DMS,, 7 estimated implementing a KF.
ng» Inj Let us define the input of the window filter for the link

Fig. 2. Overview of the sub-system than computes the relgtivsition of between nOdESi and i at instantk as:

each robot. f P h— ok
(I)ij = [pijapij e Pij V] (4)

A. Online channel estimation using ToF where pf; is the Received Signal Strength of the packet
RF power decays as the electro-magnetic waves tratensmitted fromy; to n; at instantk, andgafj is the window
through air. By measuring the RSSI of a message, and uslaggth at that time. We want to define a relationship between

a propagation model, it is possible to infer the distance tdjj and the relative velocity betweem andn;. If a node
the transmitter. However, such a computation requires th®ves, the window filter will contain inside his window
knowledge of several parameters, as the transmission poweatues of theRSSI measured at different positions. To avoid
antenna gains, frequency of the carrier, and medium characthis inconsistency we impose that the difference between th
istics. In open space, the relationship between signahgtine distance at first instant in the time windosl{ij and the last

and distance can be represented by the log-distance path |gse ¢ has to be smaller than the standard deviation of
model [26]: RSSI:

k—pF.
|df; — dy; 79| < drssi- (5)

do Assuming a constant speed in the interdl it is possible
wherep, is the RSS! value at distance g is the RSSI value [0 €xpress the relative speed as:

d
pa = po — 10alog <—> = d = dy x 10(Po—pa)/(10a) (2)

at a reference distaneg(we considekl, = 1), which includes o |d’-“- _ d/_c_—1|

the aggregated effects of transmission power, antenna,gain |di; | = ”AiT” (6)
and frequency attenuation; ands the path loss exponent that _ . ) )
represents the propagation medium properties. where AT is the interval between two consecutive received

When a node sends a packet, the receiver obtains the RB&¢kets fronv);. Equations (5) and (6) can then be combined
from the transceiver and uses Equation (2) to compute tfecompute a bound for the window size:
distance. However, a proper propagation model requires the SRSST
estimation of the equation parameters, namely the referenc sﬁfj <—% (7)
RSSI valuepy at the respective reference distarnfge and the |dij AT
path loss exponent. In this work, the distance obtained with  Equation (7) can be showed in a graphical view as a
the ToF technique is used to estimate the channel model: Wgerbolic curve (Fig. 3). In order to maintain the window
define a vectoy of predefinedn log-separated distances andize ¢f; constrained between a higher and a lower bound,
create the matricesl (size [m + 1,2]) and a vecton (size Equation (7) has been modified as follows:
m + 1), consideringdy = 1.

dRSS
1 —10log(g(1)) p’é*l — 10a*~11log(g(1)) ‘Pfj < : ;I: I. + ©min, (8)
1 —10log(g(2)) pb1 = 100% 1 log(g(2)) (v-dij +do)AT
E_ |- . E_ . . 0
A" = . . ﬂb - . d() = ﬂ (9)
1 —10log(g(m)) pE=1 10051 log(g(m)) Pmaz AT
1 —101log d* ok

where d,, is needed to return a finite value when the node
_The firstm lines represent the previously estimated modgd in steady state, and is a constant proportional to the
Xk=1, while the last element represents the new measuremenaximum acceleration of the system. Thys,.. and ¢y,
Then, the new channel modet* is obtained using the define the maximum and the minimum size of the window,
Maximum Likelihood Estimator (MLE): and~y increases or reduces the slope of the curve. Since the
size of the window must be a natural number, the function
X — [ is approximated with its ceiling, thu$§j results in a step

%
Po
ok function, as shown in (Figure 3).

il (AT A)=1 ATy, (3)




Length of the window as a function of v
16 T T T T T

—>—¢ €} —k
7 Pay, po — 10a lggw(dfj)

k = - k
Zig=|v; | = vj +v (14)
—k —k
Vi Uj

wherep,, . is the measured RSS, is the estimated speed of
noden; received inside the packet, amg is the speed of);
estimated with its own Kalman filter, as described in Section
-C.

The EKF provides also a covariance matf¥ that gives a
confidence regarding the accuracy of the measurements. The
first element of the matri¥’* denotes the confidence on the

size of the window

2 ‘ : ‘ : : : : estimated distance}; (c;; = P*[1,1]) and is provided to
0 0.5 1 1.5 2 25 3 35 4 . .
velocity m/s the wMDS algorithm to be used as weighf;, computed as
follows:

Fig. 3. Size of the median sliding window filter as a functidntlte speed.

wfj = min (1, Umm) (15)
04

C. Using IMU and KF to estimate the node speed ] ) ! o )

whereo,,;,, iS a constant representing the minimum covariance

f As typically used in rObOt'CS.’ moviments trac,;kmg 'Sh P€Bbove which the measurement is considered trustable. This
ormed by IMU sensors. To estimate the node speedd the selection is in accordance to the wMDS algorithm, which re-

acc_eleranonc, a K_F as l_oeen implemented. The State equat'%ireSwf. € [0, 1], wherel represents a precise measurement
at timet = s - At is defined as follow: while 0 ajn untrustable one

x5 — [é Aﬂ Xy [% Alt] v (10) | | V. SIMULAT-ION RI-ESULTS _
This section presents a simulation study carried out to test
L and validate the localization system proposed in this work.
X=[& i] (11) In the following experiments we are interested in improving

. , : . . .. the accuracy of the estimated distance and not in the channel
where the state vectot is defined in Equation (11) and® is model dynamical estimation [14]. Thus, we could assume

the Gaussian noise of the state. Since accelerations adduir . : : X
. ithout loss of generality that the simulation occurs urttier
IMU are the only input measurement, the measurement vector

Z will be in this case a scalar. The measurement equation %potheas of the accurate estimation of the channel model.

defined as: A. Simulation Setup

A [0 1] X° 40 (12) Our methodology has been tested through a set of simu-
lation experiments on MATLAE. An indoor environment
has been simulated with standard channel model parameters
D. IMU and EKF for Distance Tracking po = —38 dbm and o = 2. In order to perform the
simulations, we created a dataset of synthetic measurement

When noder); receives a packet fay;, it also receives its i X
estimated speed. Nodg can use this information to track thePased on previously collected data: In pqrtlculgr, the RSSI
relative distancel;;. This information improves the distancehaS been represente_d as a Gaussian noise with zero mean
tracking and is used as input for the median sliding windo@d Standard deviatiom,s,; = 4.43 m. The ToF mea-
filter described in Section I11-B. An EKF is used to fuse th§Urement, previously measured in [14], has been reprebente

wherev?® is the Gaussian noise of the measurement.

RSSI readings with the estimated speeds to track the distafic Z G(?L:jSSi?n, noise with mearr,r d:h*0'38 Im and
between the two communicating nodes. The state equatiorrgdard deviatiowr,p = 0.60 m, and t © acce erometer
time t = k- AT is defined as: as a Gaussian noise witty,,,, = —0.1 m/s* and standard
) 1 deviationo;,,, = —0.2 m/s%. The parameters for the sliding
d;ﬂ] dy; . Jlr dy; *kAlT window median filter have been defined as follgw;q, = 15,
Xk — dii _ HU_) 2‘117; H + wk (13) Pmin = 3, and~y = 1.
ij - 7 k—
ki vjk,l B. Results

—k

" v The first simulation experiment was aimed at showing how
whered;; is the estimated distance betwegrandr; andd;j the dynamic adaptation of the window size improves the
the corresponding estimated relative spegdand v; are the accuracy of the distance. Two nodgs and n, were placed
estimated speeds of the two nodes, @fidhe state noise. The at a starting distance), = 4m. Then noden; was moved
measure equation is: with a given speed (about.3m/s) forward and backward.



To keep a common consistent information about the topologKF have similar behaviors. The EKF use the RSSI data to
of the team, each node periodically sends a packet with Bkck the drift on the speed caused by the integration of the
local distance matrixD, the weight matrixiV’ relative to the accelerometer. Due to this motivation, our EKF follows more
distance and the speed estimated from its EKF. Note thathe RSSI than the velocity measurements. The window filter is
packet is sent with a periodT = 1s, while the accelerometer more responsive because its window is updated dynamically
is sampled with a period\t = 50ms. Figure 4 shows the by the EKF. However, it is worth noting that, even if the
real distance (dashed line) was compared with the distarereor is slightly worse, the EKF also provides the covar&anc
estimated with RSSI-only ("*" marker), the dynamic windowmatrix P that is a confidence on how much we can trust the
filter (solid line), and the EKF filter ("o’ marker). results. This information can be used as weight for the wMDS
algorithm as described in Section IlI-D. Having a dynamic
‘ T — window size allows improving the accuracy when the nodes
121 I - Distance RSS! 1 are stopped while permitting a fast dynamic. Figure 6a shows
| “o pameetomee |17 11 how the window filter adapts his size as a function of the
| estimated relative speed that is also compared with the real
speed (shown in Figure 6b).
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Fig. 4. Comparison between the real distance and the déestestanated with "

RSSI-only, the window filter, and the EKF.
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Note that with RSSI-only the estimation presents larc
fluctuations due to the noisy measurements of RSSI, wher:
using the window filter (that makes use of IMUs for con
trolling the filtering Window and the EKF) the spikes are s = m = = e w0 e
dramatically reduced while the EKF estimates the relati Time (second)
speed and perform a feedback control on the window size.

Fig. 6. a) How the window size adapts as a function of the edéchspeed.
Distbuion of the distance error with RSSI-only b) Real speed compared with the estimated derivative of igtartte.

— — — Distribution of the distance error with Window Filter
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To see how the size of the window filter affects the dis-
tance measurements, a simulation comparing dynamic window
against two fixed windows of sizeand15 has been executed.
| Figure 7 shows the three estimated distances compared with
the measured distance.

A With a fixed window sizep = 3, the estimation of the
distance is noisy but follows the dynamics of the systemhWit

a fixed window sizep = 15, the estimation is much better,
but of course the estimation has a higher delay that may be
unacceptable if a node moves fast. In this cases, a solution
- based on a dynamic window can reach a higher precision in the
Distance Ertor (meter estimation while supporting faster dynamics. This canlgasi
be seen in Figure 8, where the error distribution of the three
different implementations is showed.

05—

04

Probability

0.2~

Fig. 5. Distribution of the mean error of the distance withSR®nly, the
window filter, and the EKF.

Figure 5 shows the distribution of the error between the V. EXPERIMENTAL RESULTS
real distance and the distance estimated with RSSI-onty, th This section presents a set of experimental tests performed
window filter, and the EKF. As expected, RSSIl-only hat verify the feasibility of the localization method on real
a large standard deviation, while the window-filter and thiestbed. The experimental setup is composed IBex Mini



‘ collected and provided to a PC running the wMDS algorithm,

10 F 1 . . . .
[ implemented in MATLABR), Figure 9 and Figure 10 plot
of T ‘H‘ {1 the outputs from the classical MDS and wMDS algorithms,
f I .
7 —— [ respectively.
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07 . . . . Fig. 9. Relative localization map computed using the ctaddVIDS.
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Fig. 8. Distribution of the distance error with window sizé & 15, and Fig. 10. Relative localization map computed using wMDS.

dynamic window .
As clear from the plots, the wMDS (which uses the co-

variance matrix as a weight and the coordinates estimated
boards [27], each equipped with ¥6-bits microcontroller at the previous time instant) exhibits better results. Tihis
and a radio transceiver compliant with the IEBH2.15.4 motivated by the fact that the knowledge of the topology at
standard [28]. The transceiver provides the RSSI of eattie previous time instant reduces the noise of the output map
received packet, represented by8eabits value. Each board caused by the algorithm itself. Figure 11 shows the the error
is also equipped with an analog 3-axis accelerometer samptfistribution of the difference between the measured distan
by a12-bit Analog to Digital Converter (ADC) of the board’sand its mean, for all the nodes. The error distribution altdi
microcontroller. Note that in this setup accelerations thee with the wMDS presents a mean error= 60.3mm and a
only data provided by the IMU. std. ¢ = 56mm against the mean errqr = 200.3mm and
A. Results the stdo = 112.1mm of the classical MDS. It is important to
) ) ) ] highlights that this is not the error distribution of thetdisce
An experiment was carried out with nodes at fixed (yne correctness of the measured distance depends on the

positions to show how much the use of the wMDS algorithiyy3nnel model estimation), but of the noise of the output by
improves the results in the relative map topology. Eztthns  \ps.

a master node sent a request to a specific node that answers

with a broadcast packet. Each packet contains the distances VI. CONCLUSION AND FUTURE WORK

and covariances data together with the estimated speged This paper presented an anchor-free localization method
from the KF running in the source node. These values wdrgended for groups of mobile nodes. The proposed approach
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Fig. 11. Error distribution of the measured distance betweeder; and
the others nodes using MDS and wMDS.

exploits ToF and RSSI information, obtained from local conEG]
munication, and IMU sensors to measure the relative distanc
between nodes. From the inter-node distances and by me
of a wMDS algorithm, the localization system can derive f

[8] D. Niculescu and B. Nath, “Ad hoc positioning system (AR&ing
AOA,” in INFOCOM 2003. 22th Conference of the IEEE Computer and
Communications. IEEE Societiegol. 3. |EEE, 2003, pp. 1734-1743.
P. Kutakowski, J. Vales-Alonso, E. Egea-Lopez, W. Ludwand
J. Garcia-Haro, “Angle-of-arrival localization based antenna arrays
for wireless sensor networksComputers & Electrical Engineering
vol. 36, no. 6, pp. 1181-1186, 2010.
J. A. Costa, N. Patwari, and A. O. Hero lll, “Distributadeighted-
multidimensional scaling for node localization in sensetworks,”ACM
Transactions on Sensor Networks (TOSN). 2, no. 1, pp. 39-64, 2006.
Nanotron. (2010) nanoloc development kit. [Online].vafable:
http://www.nanotron.com/EN/PRil_dev_kit.php
S. Thrun, W. Burgard, D. Fogt al, Probabilistic robotics MIT press
Cambridge, 2005, vol. 1.
J. V. CandyBayesian signal processing: Classical, modern and paaticl
filtering methods John Wiley & Sons, 2011, vol. 54.
L. Oliveira, C. Di Franco, T. E. Abrudan, and L. Almeid&using Time-
of-Flight and Received Signal Strength for Adaptive Raéieguency
Ranging,” in International Conference on Advanced Robotics, 2013.
ICAR 2013 IEEE, 2013.
D. Macii, A. Colombo, P. Pivato, and D. Fontanelli, “Atdafusion tech-
nique for wireless ranging performance improvemehtstrumentation
and Measurement, |IEEE Transactions, aol. 62, no. 1, pp. 27-37,
2013.
J. A. Corrales, F. A. Candelas, and F. Torres, “Hybridcking of
human operators using IMU/UWB data fusion by a Kalman filter,
Proceedings of the 3rd ACM/IEEE International ConferenoegHuman-

g Robot Interaction, (HRI) 2008 IEEE, 2008.
1)

El

(20]

(11]
[12]
(13]

[14]

(18]

A. Benini, A. Mancini, A. Marinelli, and S. Longhi, “A Bised Extended
Kalman Filter for Indoor Localization of a Mobile Agent Usir_ow-

each node the relative position of the other group members. Cost IMU and UWB Wireless Sensor Network Robot Control,”Lidth

A set of simulation experiments, based on real data, has

carried out to show the accuracy of the proposed approac
comparison with RSSI-only localization methods. Moreover

brTen IFAC Symposium on Robot ControlIFAC, 2012.
in

A. Benini, A. Mancini, and S. Longhi, “An IMU/UWB/Visia-based
Extended Kalman Filter for Mini-UAV Localization in Indodgnviron-
ment using 802.15.4a Wireless Sensor Netwodk{irnal of Intelligent

the effectiveness of the proposed solution has been tes{e and Robotic Systemsol. 70, no. 1, pp. 461-476, 2013.

through an experimental evaluation.

In the future we want to improve the EKF with information
from the wMDS output to further reduce the drift connecte
with IMU integration. In particular, we want to understand

19] A. Savioli, E. Goldoni, P. Savazzi, and P. Gamba, “Lown@uexity
Indoor Localization in Wireless Sensor Networks by UWB andrtial
Data Fusion,” inarXiv:1305.1657 arXiv, 2013.

401 V. Malyavej, W. Kumkeaw, and M. Waraponi, “Indoor Robéb-

calization by RSSI/IMU Sensor Fusion,” iRroceedings of the 2013

10th International Conference on Electrical Engineerialgttronics,

how the localization accuracy decreases as a function of the Computer, Telecommunications and Information TechnolB@TI-CON

nodes speed and also intend to implement a distributedover
of the wMDS to execute the whole localization algorithm o

the team of nodes.
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