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Abstract—Monitoring teams of mobile nodes is becoming
crucial in a growing number of activities. When it is not possible
to use fix references or external measurements, a practicable
solution is to derive relative positions from local communication.
In this work, we propose an anchor-free Received Signal Strength
Indicator (RSSI) method aimed at small multi-robot teams.
Information from Inertial Measurement Unit (IMU) mounted
on the nodes and processed with a Kalman Filter are used
to estimate the robot dynamics, thus increasing the qualityof
RSSI measurements. A Multidimensional Scaling algorithm is
then used to compute the network topology from improved RSSI
data provided by all nodes. A set of experiments performed on
data acquired from a real scenario show the improvements over
RSSI-only localization methods. With respect to previous work
only an extra IMU is required, and no constraints are imposed
on its placement, like with camera-based approaches. Moreover,
no a-priori knowledge of the environment is required and no
fixed anchor nodes are needed.

I. I NTRODUCTION

Teams of mobile nodes are effective solutions for a broad
range of applications. For instance, a team of robotic nodes
can be used to accomplish several tasks, such as cleaning of
hazardous area, surveillance, monitoring, exploration, search
and rescue, and transportation. In one hand, a robotic team
can avoid the human presence in risky situations, in the other
hand it can represent the most convenient solution in terms of
performance, costs, and efficiency. Another example regards
localization systems used to track and support human workers
operating in dangerous areas [1].

The coordination of a set of mobile nodes requires to
solve different problems, such as nodes localization, data
communication, and tasks allocation. This paper is focusedon
the localization problem, which is of paramount importanceto
guarantee the cooperation among the team members. In some
situations, it might be possible to exploit an infrastructure that
makes feasible to derive the absolute positions. An example
of such as an infrastructure is the Global Positioning System
(GPS) which is a very common solution; nevertheless, it is
not a feasible solution in indoor environments or in particular
places where the signal is not available. An alternative solution
is to build a dedicated infrastructure,which is often costly and
not feasible in emergency situations.

In common situations, nodes frequently transmit messages
to collaborate. Thus, inter-nodes distances can be measured
from radio signals exploiting different techniques. In partic-
ular, a node can extract Received Signal Strength Indicator
(RSSI) information from any received packet to derive the

distance from the packet source. Therefore, any exchanged
packet can be used to determine the relative distance of each
node. However, RSSI information is affected by multi-path
fading phenomenons and quantization noise that can cause
large errors on distance estimation. Besides RSSI methods,
the distance between wireless nodes can be computed by
using techniques based on signal propagation delays. Some of
them require global time synchronization, as Time of Arrival
(ToA) [2] [3] and Time Difference of Arrival (TDoA) [4] [5]
measurements. Others, like Round-Trip Time-of-Flight [6][7],
now on Time of Flight (ToF) for brevity, do not need global
time synchronization, since based on unilateral measurements.
Alternative approaches exploit Angle of Arrival (AoA) tech-
niques that need antenna arrays to work [8] [9].

In addition to radio signals, the position of a mobile unit
can be estimated by IMU sensors. An IMU is a device usually
composed by accelerometers, gyroscopes and, sometimes, a
magnetometer. By an IMU it is possible to measure velocity,
orientation, and gravitational forces on a body. Hence, a
mobile robot equipped with an IMU can derive its speed
and position integrating the acceleration with respect to time.
Unfortunately, the acceleration values provided by an IMU
suffer a small bias that, together with the integration process,
causes drift errors to the position measures.

To increase the accuracy of the measured distances, an
effective solution is to combine different sources of data.

A. Contributions and summary

This work proposes a localization method that combines
inertial data provided by IMU sensors, ToF, and RSSI infor-
mation obtained from radio communications, to derive inter-
node distances. These distances are stored by each node in
a distance matrix used to compute the relative coordinates
of every team member through a weighted Multidimensional
Scaling (wMDS) algorithm [10].

The major advantage of the proposed solution is that the
precision of distance measurements is improved by combining
IMU and ToF with RSSI information, maintaining the fast
dynamics of RSSI readings. Moreover the proposed system
does not use expensive hardware, since IMU sensors and radio
transceivers that provide RSSI information are widely usedand
not expensive. Moreover, nowadays there are manufacturers
that provide low cost devices for ToF measurements [11].

The rest of the paper is organized as follows. Section II
analyzes the related work, Section III describes the localiza-



tion system in detail, Section IV shows the simulation and
the experimental results and, finally, Section VI states out
conclusions and future work.

II. RELATED WORK

A lot of research has been carried out on the problem
of indoor localization. Several solutions are based on time-
based techniques, RSSI techniques, and some others exploit
IMU sensors. More recent works proposed hybrid methods
that combine different types of data, e.g RSSI and IMU
data, to improve the accuracy of position measures. The main
techniques used for data fusion are based on Kalman [12],
Bayesian and Particle [13] filtering.

Oliveira et al. [14] proposed an anchor-free localization
algorithm intended for small multi-robot teams. By combining
both the ToF and RSSI ranging, the algorithm performs an
online estimation of the indoor log-distance path loss model
of the radio channel. This model is then used, together with
an Extended Kalman Filter (EKF) [12], to track the distance
between every pair of units. In [15], the authors proposed
another approach to fuse RSSI and ToF information that,
differently from [14], assumes the channel parameters to be
estimated in advance.

Some other research works base their localization systems
on both IMU devices and Ultra-WideBand (UWB) radio posi-
tioning technology, which is mainly based on TDoA and AoA
techniques. Corrales et al. [16] proposed a hybrid tracking
system for the localization of a person in a workplace. The
system is composed by an inertial motion capture system,
used to track the movements of the person’s limbs, and by
an UWB localization system. The positions measured by
both systems are combined through a Kalman Filter (KF)
to improve the measurements accuracy. Benini et al. [17]
presented an indoor localization system for mobile agents
combining data provided by a commercial UWB localization
system and a low-cost IMU by means of an EKF. In [18] the
same authors extended their method by adding position data
coming from a visual odometry system based on markers. The
proposed solution is utilized to track the position of a small
Unmanned Air Vehicle (UAV). Savioli et al. [19] proposed an
indoor localization system that combines position data coming
from an UWB localization system and inertial sensors. The
data fusion is obtained by a fixed-gain steady KF that lowers
the computational complexity of the algorithm, allowing its
implementation on resource limited devices, typically used in
wireless sensors network applications.

Some other works proposed methods to combine RSSI and
IMU data. Malyavej et al. [20] considered the localization
problem of indoor mobile robots. They proposed a localization
method based on the fusion of RSSI data, coming from WiFi
access points, and data coming from onboard IMU sensors.
The sensor data fusion is obtained by an EKF. Schmid et
al. [21] presented an experimental study on the pedestrian lo-
calization problem, which analyzes the improvements that can
be obtained by fusing inertial data and RSSI data. This work
compared the accuracy of a RSSI-only localization approach

with respect to the RSSI and IMU data fusion approach. The
authors concluded that the improvements obtained by fusing
IMU and RSSI information reduces the positioning error to a
certain amount, but the resulting accuracy is not significantly
improved. However, they also concluded that the achievable
localization accuracies suffices for the person localization sce-
narios considered in the experiments. Woodman and Harle [22]
described a tracking system for pedestrian localization inside
buildings. The proposed system uses a model of the building,
a foot mounted IMU and a particle filter to deal with the
typical drift problems of inertial sensors. The initial position
of the tracked person is obtained by exploiting RSSI data
obtained from a set of WiFi access points. The system is able
to track the position of a person in buildings with multiple
floors and stairs. The experimental results showed that, by
using an ultrasonic localization system as ground truth, the
resulting position accuracy is0.5 meters for75% of the time,
and0.73 meters for95% of the time. Fink et al. [1] presented
a localization system based on sensor fusion of RSSI data and
positioning data obtained by an Inertial Navigation System
(INS) composed by two accelerometers and one gyroscopic
sensor. The precision of distance measures obtained by RSSI
data was increased by adopting a diversity scheme based on
antenna and frequency diversity and a KF to estimate and
correct the drift errors of the INS. The proposed system has
been evaluated in a testbed composed by eight anchor nodes,
called reference nodes, evenly distributed in an overground
longwall mining. The node to be tracked is carried by a
person that moves linearly among the reference nodes. The
experiments highlighted that the localization system shows
an average estimation error of1.68 metres. Li et al. [23]
presented a method to track mobile nodes that fuses WiFi
RSSI data and inertial data from a smartphone. The proposed
solution is composed by a Sequential Monte Carlo Kalman
Filter (SMC-KF), which elaborates the navigation data coming
from the smartphone IMU, and a Steepest Descent Random
Start (SDRS) algorithm that elaborates the RSSI data. The
performance of the proposed approach has been assessed by
simulation experiments an compared with solutions based on
IMU data elaborated by an EKF, and solutions based on UWB
radio-location devices.

In the solutions reported above, RSSI and UWB positioning
data are gathered exploiting a set of wireless nodes used as
reference anchors. The work proposed in this paper does not
rely on fixed anchors, but the RSSI data are gathered from the
local communication among the robotic team members. Note
that, the main advantage of an anchor-free approach is that
it does not require a fixed infrastructure, making the system
more flexible and cheaper.

III. SYSTEM DESCRIPTION

The system is composed byn mobile nodes{η1, . . . , ηn}
that communicate through a radio channel forming a fully
connected network. Each node is equipped with an IMU and
a radio system that provides both RSSI and ToF information.



The localization is performed by two sub-systems. A first
one, called Distance Measurement Sub-system (DMS), which
estimates the inter-nodes distance every time a packet is
received, and a second sub-system, which use these inter-node
distances to compute the relative positions of all nodes.

Each nodeηi implements the DMS, which estimates the
inter-node distances from RSSI, ToF, and IMU data collected
by the node. Each node estimates its speed using data acquired
from the onboard IMU.

When a new ToF information is available it is possible
to estimate the channel model. We use the RSSI value to
estimate the distance every time a packet is received. It is also
important to note that each node sends its estimated speed
inside the packet: when a node receives a packet it can use
the information regarding the transmitter speed and its own
estimated speed to estimate their relative speed and improve
the accuracy of the estimated distance with the RSSI.

In particular, each DMSi is composed by four main blocks,
as shown in Figure 1:

• A filter that mitigates the noise and the quantization errors
present in the RSSI data implemented as a median sliding
window;

• An on-line channel estimator based on ToF information,
used to characterize the relation between the nodes dis-
tance and the RSSI;

• A KF that estimates the nodes movements from IMU
data;

• An EKF that integrates the output of the other blocks
and provides a better estimation of the distance between
nodes.

~vj

DMSi

ρij

ToFij

Window
Filter ρ̃ij

~ai

~vi

Channel
Estimator

KF

EKF

ρ0 αḋ

dij , σij

Fig. 1. Overview of the inter-robot Distance Measurement Sub-system (DMS)
on nodeηi.

Figure 1 shows the block diagram that illustrates the whole
sub-system. Each packed received from nodeηj provides
information regarding the node speed~vj and ρij that is the
RSSI of the packet. The ToFij value provided by the ToF
technique is used to estimate the channel model.~ai is the
acceleration vector from the node’s IMU. The EKF estimates
the relative speed betweenηi and ηj used to dynamically

control the median sliding window filter as described in detail
in Section III-B. The sub-systemDMSi produces two outputs:
an estimation of the distance (dij) betweenηi andηj and its
covarianceσij . The approach shown in Figure 1 not only gives
better estimation of distances, but also provides information
regarding the quality of each distance depending on the actual
noise level and node mobility.

All these data are collected and integrated in the second sub-
system to compute the map with all the nodes relative loca-
tions. A technique widely used to perform the estimation is the
Multidimensional Scaling (MDS) [24], which is a method that
represents measurements of similarity (or dissimilarity)among
pairs of objects as distances between points in a N-dimensional
space. Applications of the MDS algorithm include scientific
visualization and data mining in several fields [24], including
it also can be used to find a relative map between nodes [25].
The algorithm takes as input data pairwise (dis)similarities
(e.g., distances) and returns a set of coordinates as a relative
map. Givenn nodes in two dimensions and the estimated
pairwise distancesdij , MDS recovers the nodes coordinates~xi
for all nodes minimizing the mismatch between the estimated
distancesd̂ij and the distancesdij(~xi, ~xj) corresponding to
the unknown coordinates~xi. The mismatch is calledStress
function. If a reliability information is associated with the
measured distance, it is possible to use wMDS [10]. In wMDS,
the Stress functionis defined as:

S(~x1, ..., ~xn) =
n∑

i=1

n∑

j 6=i,j=1

wij [d̂ij − dij(~xi, ~xj)]
2+

+

n∑

i=1

‖ ~xi − ~̂xi ‖
2
2

(1)

wherewij is the weight associated with the corresponding
distance. In our system it is possible to define the weight as
a function of the covariance information from the output of
the EKF of the first sub-system. As shown in Figure 2, each
nodeηi estimates all the distancesdij and the covarianceσij
for the nodesηj with DMSi. This information is aggregated
inside the blockCollector which produces the distance matrix
D and the weight matrixW . D is a n × n matrix where
each itemi, j corresponds to the estimated distancedij (on
the diagonaldii = 0). Since wMDS requires a symmetric
matrix, each itemDij of the matrix is calculated as the mean
betweendij and dji. W is a n × n matrix where each item
is obtained as a function of the covariancesσij , as better
described in Section III-D. wMDS also receives as input a set
of coordinates used as a starting point. Using set of estimated
coordinates computed in the previous iteration as an input for
the next wMDS estimation, it is possible to reduce the error in
the map topology of the nodes, as will be showed in detail in
Section V. The wMDS algorithm can be distributed on each
node, or executed on one of them, or on a central station. The
estimated distances by the nodes are exchanged as part of the
wireless communication, to aggregate the matrices and execute
the wMDS algorithm in one of the tree ways mentioned above.
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Fig. 2. Overview of the sub-system than computes the relative position of
each robot.

A. Online channel estimation using ToF

RF power decays as the electro-magnetic waves travel
through air. By measuring the RSSI of a message, and using
a propagation model, it is possible to infer the distance to
the transmitter. However, such a computation requires the
knowledge of several parameters, as the transmission power,
antenna gains, frequency of the carrier, and medium character-
istics. In open space, the relationship between signal strength
and distance can be represented by the log-distance path loss
model [26]:

ρd = ρ0 − 10α log

(
d

d0

)
⇐⇒ d = d0 × 10(ρ0−ρd)/(10α) (2)

whereρd is the RSSI value at distance d;ρ0 is the RSSI value
at a reference distanced0(we considerd0 = 1), which includes
the aggregated effects of transmission power, antenna gains,
and frequency attenuation; andα is the path loss exponent that
represents the propagation medium properties.

When a node sends a packet, the receiver obtains the RSSI
from the transceiver and uses Equation (2) to compute the
distance. However, a proper propagation model requires the
estimation of the equation parameters, namely the reference
RSSI valueρ0 at the respective reference distanced0, and the
path loss exponentα. In this work, the distance obtained with
the ToF technique is used to estimate the channel model: we
define a vectorg of predefinedm log-separated distances and
create the matricesA (size [m + 1, 2]) and a vectorb (size
m+ 1), consideringd0 = 1.

Ak =




1 −10 log(g(1))
1 −10 log(g(2))
...

...
1 −10 log(g(m))

1 −10 loĝdk


 , b

k =




ρk−1

0
− 10αk−1 log(g(1))

ρk−1

0
− 10αk−1 log(g(2))

...
ρk−1

0
− 10αk−1 log(g(m))

̂ρk




The firstm lines represent the previously estimated model
X̂k−1, while the last element represents the new measurement.
Then, the new channel model̂Xk is obtained using the
Maximum Likelihood Estimator (MLE):

X̂k =

[
ρ̂k0
α̂k

]
= (ATA)−1AT b. (3)

This allows to run the MLE algorithm using a fixed number
of samples (m+1), and to fuse the new knowledge into previ-
ous one, wherem defines the weight of the new measurement.

B. Using inertial measurement to improve RSSI readings

The velocity of a nodeηi can be used to improve the
windowed RSSI filter previously described by re-sizing the
length of the window accordingly to the velocity, which is
estimated implementing a KF.

Let us define the input of the window filter for the link
between nodesηi andηj at instantk as:

Φk
ij = [ρkij , ρ

k−1
ij , . . . , ρ

k−ϕk
ij

ij ] (4)

where ρkij is the Received Signal Strength of the packet
transmitted fromηj to ηi at instantk, andϕk

ij is the window
length at that time. We want to define a relationship between
ϕk
ij and the relative velocity betweenηi and ηj . If a node

moves, the window filter will contain inside his window
values of theRSSI measured at different positions. To avoid
this inconsistency we impose that the difference between the
distance at first instant in the time windowdkij and the last

one dk−ϕk
i

ij has to be smaller than the standard deviation of
RSSI:

|dkij − d
k−ϕk

ij

ij | < δRSSI . (5)

Assuming a constant speed in the interval∆t, it is possible
to express the relative speed as:

| ˙dij
k
| =

|dkij − dk−1
ij |

∆T
(6)

where∆T is the interval between two consecutive received
packets fromηj . Equations (5) and (6) can then be combined
to compute a bound for the window size:

ϕk
ij <

δRSSI

| ˙dij
k
|∆T

. (7)

Equation (7) can be showed in a graphical view as a
hyperbolic curve (Fig. 3). In order to maintain the window
size ϕk

ij constrained between a higher and a lower bound,
Equation (7) has been modified as follows:

ϕk
ij <

δRSSI

(γ · ˙dij
k
+ ḋ0)∆T

+ ϕmin, (8)

ḋ0 =
δRSSI

ϕmax∆T
(9)

where ḋ0 is needed to return a finite value when the node
is in steady state, andγ is a constant proportional to the
maximum acceleration of the system. Thus,ϕmax andϕmin

define the maximum and the minimum size of the window,
andγ increases or reduces the slope of the curve. Since the
size of the window must be a natural number, the function
is approximated with its ceiling, thusϕk

ij results in a step
function, as shown in (Figure 3).
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Fig. 3. Size of the median sliding window filter as a function of the speed.

C. Using IMU and KF to estimate the node speed

As typically used in robotics, movements tracking is per-
formed by IMU sensors. To estimate the node speed~̇x and the
acceleration~̈x, a KF as been implemented. The State equation
at time t = s ·∆t is defined as follow:

Xs =

[
1 ∆t
0 1

]
Xs−1 +

[
∆t2

2 1
0 ∆t

]
ψs (10)

X =
[
~̇x ~̈x

]
(11)

where the state vectorX is defined in Equation (11) andψs is
the Gaussian noise of the state. Since accelerations acquired by
IMU are the only input measurement, the measurement vector
Z will be in this case a scalar. The measurement equation is
defined as:

Zs =
[
0 1

]
Xs + νs (12)

whereνs is the Gaussian noise of the measurement.

D. IMU and EKF for Distance Tracking

When nodeηi receives a packet forηj , it also receives its
estimated speed. Nodeηi can use this information to track the
relative distancedij . This information improves the distance
tracking and is used as input for the median sliding window
filter described in Section III-B. An EKF is used to fuse the
RSSI readings with the estimated speeds to track the distance
between the two communicating nodes. The state equation at
time t = k ·∆T is defined as:

Xk
ij =




dkij
ḋkij
~vj

k

~vi
k


 =




dk−1
ij + ḋkij ∗∆T

‖~vj
k−1 + ~vi

k−1‖

~vj
k−1

~vi
k−1


+ ψk (13)

wheredij is the estimated distance betweenηi andηj and ˙dij
the corresponding estimated relative speed,~vi and ~vj are the
estimated speeds of the two nodes, andψk the state noise. The
measure equation is:

Zk
ij =



ρkdij

~vj
k

~vi
k


 =



ρ0 − 10α log10(d

k
ij)

~vj
k

~vi
k


+ νk (14)

whereρdij
is the measured RSSI,vj is the estimated speed of

nodeηj received inside the packet, andvi is the speed ofηi
estimated with its own Kalman filter, as described in Section
III-C.

The EKF provides also a covariance matrixP k that gives a
confidence regarding the accuracy of the measurements. The
first element of the matrixP k denotes the confidence on the
estimated distancedkij (σij = P k[1, 1]) and is provided to
the wMDS algorithm to be used as weightwk

ij , computed as
follows:

wk
ij = min

(
1,
σmin

σij

)
(15)

whereσmin is a constant representing the minimum covariance
above which the measurement is considered trustable. This
selection is in accordance to the wMDS algorithm, which re-
quireswk

ij ∈ [0, 1], where1 represents a precise measurement
while 0 an untrustable one.

IV. SIMULATION RESULTS

This section presents a simulation study carried out to test
and validate the localization system proposed in this work.
In the following experiments we are interested in improving
the accuracy of the estimated distance and not in the channel
model dynamical estimation [14]. Thus, we could assume
without loss of generality that the simulation occurs underthe
hypothesis of the accurate estimation of the channel model.

A. Simulation Setup

Our methodology has been tested through a set of simu-
lation experiments on MATLABR©. An indoor environment
has been simulated with standard channel model parameters
ρ0 = −38 dbm and α = 2. In order to perform the
simulations, we created a dataset of synthetic measurements
based on previously collected data. In particular, the RSSI
has been represented as a Gaussian noise with zero mean
and standard deviationσrssi = 4.43 m. The ToF mea-
surement, previously measured in [14], has been represented
as a Gaussian noise with meanµToF = −0.38 m and
standard deviationσToF = 0.60 m, and the accelerometer
as a Gaussian noise withµimu = −0.1 m/s2 and standard
deviationσimu = −0.2 m/s2. The parameters for the sliding
window median filter have been defined as follow:ϕmax = 15,
ϕmin = 3, andγ = 1.

B. Results

The first simulation experiment was aimed at showing how
the dynamic adaptation of the window size improves the
accuracy of the distance. Two nodesη1 and η2 were placed
at a starting distanced012 = 4m. Then nodeη1 was moved
with a given speed (about1.3m/s) forward and backward.



To keep a common consistent information about the topology
of the team, each node periodically sends a packet with its
local distance matrixD, the weight matrixW relative to the
distance and the speed estimated from its EKF. Note that a
packet is sent with a period∆T = 1s, while the accelerometer
is sampled with a period∆t = 50ms. Figure 4 shows the
real distance (dashed line) was compared with the distance
estimated with RSSI-only (’*’ marker), the dynamic window
filter (solid line), and the EKF filter (’o’ marker).
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Fig. 4. Comparison between the real distance and the distance estimated with
RSSI-only, the window filter, and the EKF.

Note that with RSSI-only the estimation presents large
fluctuations due to the noisy measurements of RSSI, whereas
using the window filter (that makes use of IMUs for con-
trolling the filtering Window and the EKF) the spikes are
dramatically reduced while the EKF estimates the relative
speed and perform a feedback control on the window size.
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Fig. 5. Distribution of the mean error of the distance with RSSI-only, the
window filter, and the EKF.

Figure 5 shows the distribution of the error between the
real distance and the distance estimated with RSSI-only, the
window filter, and the EKF. As expected, RSSI-only has
a large standard deviation, while the window-filter and the

EKF have similar behaviors. The EKF use the RSSI data to
block the drift on the speed caused by the integration of the
accelerometer. Due to this motivation, our EKF follows more
the RSSI than the velocity measurements. The window filter is
more responsive because its window is updated dynamically
by the EKF. However, it is worth noting that, even if the
error is slightly worse, the EKF also provides the covariance
matrix P that is a confidence on how much we can trust the
results. This information can be used as weight for the wMDS
algorithm as described in Section III-D. Having a dynamic
window size allows improving the accuracy when the nodes
are stopped while permitting a fast dynamic. Figure 6a shows
how the window filter adapts his size as a function of the
estimated relative speed that is also compared with the real
speed (shown in Figure 6b).
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Fig. 6. a) How the window size adapts as a function of the estimated speed.
b) Real speed compared with the estimated derivative of the distance.

To see how the size of the window filter affects the dis-
tance measurements, a simulation comparing dynamic window
against two fixed windows of size3 and15 has been executed.
Figure 7 shows the three estimated distances compared with
the measured distance.

With a fixed window sizeϕ = 3, the estimation of the
distance is noisy but follows the dynamics of the system. With
a fixed window sizeϕ = 15, the estimation is much better,
but of course the estimation has a higher delay that may be
unacceptable if a node moves fast. In this cases, a solution
based on a dynamic window can reach a higher precision in the
estimation while supporting faster dynamics. This can easily
be seen in Figure 8, where the error distribution of the three
different implementations is showed.

V. EXPERIMENTAL RESULTS

This section presents a set of experimental tests performed
to verify the feasibility of the localization method on real
testbed. The experimental setup is composed by4 Flex Mini
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Fig. 7. Comparison between three simulation with a window size of 3, 15,
and dynamic windows.
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Fig. 8. Distribution of the distance error with window size of 3, 15, and
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boards [27], each equipped with a16-bits microcontroller
and a radio transceiver compliant with the IEEE802.15.4
standard [28]. The transceiver provides the RSSI of each
received packet, represented by a8 bits value. Each board
is also equipped with an analog 3-axis accelerometer sampled
by a12-bit Analog to Digital Converter (ADC) of the board’s
microcontroller. Note that in this setup accelerations arethe
only data provided by the IMU.

A. Results

An experiment was carried out with4 nodes at fixed
positions to show how much the use of the wMDS algorithm
improves the results in the relative map topology. Each300ms
a master node sent a request to a specific node that answers
with a broadcast packet. Each packet contains the distances
and covariances data together with the estimated speedvi
from the KF running in the source node. These values were

collected and provided to a PC running the wMDS algorithm,
implemented in MATLABR©. Figure 9 and Figure 10 plot
the outputs from the classical MDS and wMDS algorithms,
respectively.
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Fig. 9. Relative localization map computed using the classical MDS.
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Fig. 10. Relative localization map computed using wMDS.

As clear from the plots, the wMDS (which uses the co-
variance matrix as a weight and the coordinates estimated
at the previous time instant) exhibits better results. Thisis
motivated by the fact that the knowledge of the topology at
the previous time instant reduces the noise of the output map
caused by the algorithm itself. Figure 11 shows the the error
distribution of the difference between the measured distance
and its mean, for all the nodes. The error distribution obtained
with the wMDS presents a mean errorµ = 60.3mm and a
std. σ = 56mm against the mean errorµ = 200.3mm and
the stdσ = 112.1mm of the classical MDS. It is important to
highlights that this is not the error distribution of the distance
(the correctness of the measured distance depends on the
channel model estimation), but of the noise of the output by
MDS.

VI. CONCLUSION AND FUTURE WORK

This paper presented an anchor-free localization method
intended for groups of mobile nodes. The proposed approach
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Fig. 11. Error distribution of the measured distance between nodeη1 and
the others nodes using MDS and wMDS.

exploits ToF and RSSI information, obtained from local com-
munication, and IMU sensors to measure the relative distance
between nodes. From the inter-node distances and by means
of a wMDS algorithm, the localization system can derive for
each node the relative position of the other group members.
A set of simulation experiments, based on real data, has been
carried out to show the accuracy of the proposed approach in
comparison with RSSI-only localization methods. Moreover,
the effectiveness of the proposed solution has been tested
through an experimental evaluation.

In the future we want to improve the EKF with information
from the wMDS output to further reduce the drift connected
with IMU integration. In particular, we want to understand
how the localization accuracy decreases as a function of the
nodes speed and also intend to implement a distributed version
of the wMDS to execute the whole localization algorithm on
the team of nodes.
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